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.
A SUMMARY OF DIAGONAL TENSION

PART I- METHODS OF ANALYSIS.

By Paul Kuhn, James P. Peterson,
and L. ROSS Levin

.

7,

Previously published methods for stress and strength analysis of c
plane and curved shear webs working in diagonal tension are presented
as a unified method. The treatment is sufficiently comprehendive and
detailed to make the paper self-contained. Part I discusses the theory
and methods for calculating the stresses and shear deflections of web
systems as well as the strengths of the web, the stiffeners, and the
riveting. Part II, published separately, presents the experimental
evidence.

INTRODUCTION

The development of diagonal-tensionwebs is one of the most oti-
standing examples of departures of aeronautical design from the beaten
paths of structural engineering. Standard structural practice had been
to assume that the load-bearing capacity of a shear web was exhausted
when the web buckled; stiffeners were employed to raise the buckling
stress unless the ~b was very thick. Wagner demonstrated (reference 1)
that a thin web with transverse stiffeners does not “fail” when it
buckles; it merely forms diagonal folds and functions as a series of
tension diagonals, while the stiffeners act as compression posts. The
web-stiffener system thus functions like a truss and is capable of
carrying loads many t-s greater than those producing buckling of the
web.

For a number of years, it was customsry to consider webs either as
“shear-resistant”webs, in which no buckling takes place before failure,
or else as diagonal-tensionwebs obeying the laws of ‘pure” diagonal
tension. As a matter of fact, the state of pure diagonal tension is an
ideal one that is only approached asymptotically. Truly shear-resistant
webs are possible but rare in aeronautical practice. Practically, all
webs fall into the intermediate region of “incomplete diagonal tension.”
An engineering theory of incomplete diagonal tension is presented herein
which may be regarded as a method for interpolatingbetween the two

.

I

—
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limiting cases of pure-diagonal-tension and “shear-resistant”webs, the
limiting cases being included. A single unified method of design thus
replaces the two separate methods formerly used. Plane webs as well as
curved webs are considered.

.

All the formulas and graphs necessary for practical use are collected
in two sections, one dealing with plane webs and one with curved webs.
Howeverj competent design work, and especially refinement of designs,
requires not only familiarity with the routine application of formulas
but also an understanding of the basis on which the methods rest, their
reliability and their accuracy. The method of diagonal-tension analysis
presented herein is a compound of simple theory and empiricism. Both con-
stituents are discussed to the extent deemed useful in aiding the reader
to develop an adequate understanding. The detailed presentation of the
experimental evidence, however, is made separately in Part II (refer-
ence 2); a study of this evidence is not considered necessary for
engineers interested only in application of the methods.

FREQUENTIX USED SYMEOIS
,-

A

E

G

Ge

1

J

L

Le

M

P

%

cross-sectional area,

yOUngfS mdulua, ksi

Shf2Srmodulus, ksi

square inches

effective shear nmdulus (includes effects of diagonal
tension and of plasticity), ksi

force in beam flange due to horizontal component of
diagonal tension, kips

moment of inertia, inches4

torsion constant, inches4

length of beam, inches

effectiw column length of

bending mommt, inch-kips

force, kips

internal force in upright,

upright, inches

kips

.
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.

2

Q

R

R“

RR

‘d~Rh

s

T

d

dc

e

h

h=

he

hR

%

k

kSS

(1

t

a

static moment about neutral axis of parts of cross section

as specified by subscript or in teti, inches3

total shear
rivets-in

shear force

value of R

strength (in single shear) of all upright-to-web
one upright, kips

on rivets per inch run, kips per inch

required by formla (~)

restraint coefficients for shear buckling of web (see
equation (32))

transverse shear force, kips

torque, inch-kips

spacing of uprights, inches

clear upright spacing, measured as shown in figure 12(a)

distance from median plane of web to centroid of (single)
upright, inches

depth of beam, inches

clear depth of web, measured as shown in figure X2(a)

effective depth of beam measmd between centroids of
flanges, inches

depth of beam measured between centroids of web-to-flange
rivet patterns, inches

length of upri@t measured between centroids of upright-to.
flange rivet patterns, inches

diagonal-tensionfactor

theoretical buckling coefficient for plates with simply
supported edges.

shear flow (shear force per inch), kips per inch

thichess, inches (when used without subscript, signifies
thickness of web)

angle between neutral axis of beams and direction of
diagonal tension, degrees

.— —. — —
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deflection of beam, inches

P

P

normal strain

Poissonts ratio

centroidal radius of gyration of cross section
about axis parallel to web, inches (no sheet
included)

a normal stress, ksi

.

of upright
should be

ao “basic allowable” stress for forced crippling of uprights
definedby formulas (37), ksi

T shesr stress, ksi

T*all “basic alloWble” value of web shear stress given by fig-
ure 19, ksi

& flange flexibility factor, defined by expression (19a)

Subscripts:

m diagonal tension

incomplete diagonal tension

pure diagonal tension

F flange

s shear

u upright

W web

allowable

av average

cr critical

Cy compressive yield

e effective

—.. —.——._ .—.——
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max. maximum

lilt titimate

Symbols Used Only for Curved-Web Systems

R radius of.curvature, inches

z curvature parameter, deftied in figure 30

d spacing of rings, inches

h length of arc between strhgers, inches

Subscripts:

RG ring

ST stringer

PLANE-WEB SYSTEMS

1. Theory of the “Shear-Resistant”Beam

Typical cross sections of built-up beams are shown h figure 1.
When the web is sufficiently thick to resist buckling up to the failing
load (without or with the aid of stiffeners), the beam is called “shear-
buckling resistant” or, for the sake of brevity, “shear resistant.” Web
stiffeners, if employed, are usually arranged normal to the longitudinal
axis of the beam and have then no direct influence on the stress
distribution.

If the web-to-flange connections are adequately stiff, the stresses
in built-up beams follow fairly well the formulas of the engineering
theory of bending

(1)

(2)

.--—.——— ——— .———— — —— —— ——.—. .—. — ..— ——–—.
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the shear flow in outstanding legs of flange
is computed by taking sections such as A-A ?

h-figure l(a). As is we12-hmwn, the distribution of the shear flow
over the depth of the web follows a parabolic law. Usually, the dif-
ference between the highest shear flow in the web (along the neutral
axis) and the lowest value (along the rivet line) is rather small, and
the design of the web may be based on the average shear flow

where C@ is the static moment about the neutral axis of the flange

area and ~, the static moment of the web material above the neutral

=is. When the depth of the flange is small compared with the depth
of the beam (fig. l(c)) and the bending stresses in the web are neg-
lected, the formulas are simplified to the so-called “plate-girder
formulas”

(3)

(4)

q=~
he

(5)

which imply the idealized structure shown on the right in figure l(c).

When the proportions Of the cross section are extreme, as in fig-
ures l(a) and l(b), formulas (1) and (2) should be used, because the
use of formulas (3) to (5) may result in large errors. In such cases,
the web-to-flange connection, particularly if riveted,is often over-
loaded and yields at low loads. The beam then no longer acts as an
integral unit, the two flanges tend to act as individual beams restrained
by the web, and the calculation of the stresses becomes ‘--—-“-’-”-”
and inaccurate.

.

2. Theory of Pure Diagonal Tension

The theory of pure diagonal tension was developed by Wagner in
reference 1. The following presentation is confined to those results
that ae considered to be of practical usefulness, and the method of
presentation of some items is changed considerably. Mathematical com-
plexities have been omitted, and an empirical formula is introduced for
one tiportant item where Wagner’s theory appears to be unconservative.

b.

—
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2.1. Basic concepts.- A diagonal-tensionbeam is defined as a

built-up beam similar in construction to a plate girder but with a web
so thin that it buckles into diagonal folds at a load well below the
design load (fig. 2). A @e-diagonal-tension beam is the theoretical
limiting case in w~ch the buckling of the web takes place at an infini-
tesimally small load. Although practical structures are not ltiely to
approach this limiting condition closely, the theory of pure diagonal
tension is of importance because it forms the basis of the engineering
theory of diagonal tension presented in section 3.

The action of a diagonal-tensionweb maybe explained with the aid
of the simple structure shown in figure 3(a), consisting of a parallelo-
gram frame of stiff bars, hinged at the corners and braced internally-
by two slender diagonals of equal size. As long as the applied load P
is very small, the two diagonals will carry equal and opposite stresses.
At a certain value of P, the compression diagonal will buckle (fig. 3(b))
and thus lose its ability to take additional large increments of stress.
Consequently, if P is increased further by large amunts, the additional
diagonal bracing force must be furnished mostlyby the tension diagonal;
at very high applied loads, the stress in the tension diagonal will be
so large that the stress in the compression diagonal is negligible by
comparison.

An analogouschange in the state of stress will occur in a similar
frame in which the internal bracing consists of a thin sheet (fig. 3(c)).
At low values of the applied load, the sheet is (practically) in a state
of pure shear, which is statically equivalent to equal tensile and com-
pressive stresses at 45° to the frame axes, as indicated on the inset
sketch. At a certain critical value of the load P, the sheet buckles,
and as the load P is increased beyond the critical value, the tensile
stresses become rapidly predominant over the compressive stresses
(fig. 3(d)). The buckles develop a regular pattern of diagonal folds,
inclined at an angle a and following the lines of the diagonal tensile
stress. When the tensile stress is so large that the compressive stress
can be neglected entirely by comparison, the sheet is said to be in the
state of fully developed or “pure” diagonal tension.

2.2. Theory of primary stresses.- A girder with a web in pure

diagonal tension is shown in figure k(a). To define this condition
physically, assume that the web is cut into a series of ribbons or strips
of unit width, measured horizontally. Each one of these strips is
inclined at the angle u to the horizontal axis and is under a uniform
tensile stress u.

The free-body diagram of figure k(b) shows the internal forces in
the strips interceptedby the section A-A combined into their resultant D.
Since all strips have the same stress, the resultant is located at mid-
height. The horizontal component HD (= S cot a) of D is balanced

.—.— . — .—z ..— —— -..— —— -.—
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by
be

compressive forces
equal, D being at

The total flange force

H in the two flanges. The two forces H must
mid-height, therefore

H= -~cota
2

(6)

iS thus

(7)

In the free-body diagram of figure k(c), each strip is cut at right
angles, giving the stress-carryingface a width of sin a; the force on
each strip is therefore ut sin a. The number of strips interceptedby
section A-A is equal to h cot a; the total force D on all strips is
therefore

D= otsinaxhcota=uht cosa

But from statics

Therefore

s
— = uht cos a
sin a

or

u=
s

ht sin a cos a

2s= (8)
ht Sin 2a

The upright is under compression, counteracting the tendency of the
diagonal tensionto pull the flanges together (fig. k(d)). The force ~
acting on each upright consists of the vertical components of the forces

!’

acting in all the strips appertaining to each upright, that is, in d
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t strips (since the strips have unit width horizontally). But as just
found, the vertical component of h cot a strips is equal to S;
therefore

~: S::d:h cota

or

Pu = -s ~tana (9)

If each strip is connected to the flange by one rivet, the force on this
rivet is equal to the force at sin a in the strip. Since the strips
are of unit width horizontally, this is the rivet force per inch run,
designatedby R“. Substittiion of the value of a from formiLa (8)
gives

R“ = s (10)

.

The angle a is usually somewhat
conservative value for most cases

h COS a
. .

less than 4s0; consequently, a slightly
is

R“ z 1.414: (10a)

All stresses or forces are now known in terms of the load P, the
dimensions h and d of the beam, and the angle a. To complete the
solution, the angle a must be found; the principle of least work may
be used to find it.

The internal work in one bay of the beam is given by the expression

~# Cl$
=-#ht+

%2
~~eh+~AFd

(The subscript e on AU is necessary only for single uprights and will

be explained in connection with formula (22). For double uprights it is
unnecessary.) By substituting into this expression the stress values in
terms of S that follow from formulas (8), (9), and (6), which are

2s 2T
CJ
‘htsin2a=sin2u

(11)

-————.-— –—- —- — —- —.. -.— ——. — ——
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Tdt~..~tanu= -— tana
‘Ue

Tht‘%?=+-cot~.-—2A~
cot a

2AF

NACA TN 2661

(12)

(13)

differentiatingto obtain the minhmnn, and omitting the constant factor

S2/E, there results

dw 8d cos 2a d2 SiIlCL d COS u.=- —— —— -——
da ht sin32a + %e Cos% ‘F s~3a

Substituting into this expression the values for the stresses given by
equations (h), (12)j md-(13) ~d
relation

4 cos 2a
-0

sin22u

from which

If a, UF, and

equations for a

After the angle

equating to zero results in the

Uu % _.

Cos% + Sti%

tan% =
“-%

‘-%
(14)

~ are expressed in terms of S and u, trigonometric

are obtained; the most convenient one is

(15)

a has been computed by formula (15), the stresses can. .
be computed by formulas (I-1)to (13). In pl~e webs, the ~le ~
generally does not deviate more than a few de~ees from an average value
of 400.

.

.

—.— —..
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2.3. Secondary stresses.- Formulas

primary stresses caused directly by the

11

(U), (M’), and (13) define the

diagonal tension. There are also
secondary stresses which should be taken into account when necessary.
The vertical components of the web stresses u acting on the flanges
cause bending of the flanges between uprights as shown in figure 5(a).
The flange maybe considered as a continuous beam supportedby the
uprights; the

is assumed to
moment occurs

In the middle
large.

total bending load in one bay is equal to ~ and, M it

be uniformly distributed, the pr.imarymaxhum bending
at the upright and is

Sd%an cc
b= ~h (16)

of the bay there is a secondary maximum moment half as

r
If the bending stiffness of the flanges is small, the deflections

of the flanges indicated in figure 5(a) are sufficient to relieve the
. diagonal-tension stress in those diagonal strips that are attached to

the flange near the middle of the bay. The diagonals attached near the
uprights must make up for this deficiency in stress and thus caxry higher
stresses than computed on the assumption that all diagonals are equa12y
loaded. In figure 5(b), this changed distribution of web stress is
indicated schematicallyby showing tension diagonals beginning only near
the uprights. The redistribution of the web tension stresses a~o causes
a reduction in the secondary flange bending moments. On the basis of
simplif~g assumptions, these effects have been evaluated by Wagner
(reference 1) and riaybe’expressed by the following formulas:

(17)

(18)

Graphs for the factors C2 and C3 will be given under section 4, where

all graphs are collected for convenience of application. The factors are
functions of the flange-flexibility

ccd=d sina

parameter uii,which is defined by

(19)

— — -_— .— . .——._—_.— ——
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where the subscripts T and C denote tension and compression flange,
respectively. For practical purposes it is sufficiently accurate to use .
the-follc&g simplified form of this formula, in
assumed to be slightly less than 45°, and the sum
replaced by four times the reciprocal of the sum

d

Tn reference 1, Wagner gave
the,value given by equation
recommended that the second

‘“”7’-

which the angle a is
of the reciprocals is

(lga)

a second value of d, 1.25 times as large as
(19a), based on a different derivation, and
value be used because it is more conservative.

Pretious paper6 have usually quoted this more conservative value of uil,
but it appears to be more conservative than necessary; it was based on the
assumption that d >> h, a condition which is now avoided in actual
designs.

2.4. Behavior of uprights.- The uprights in a diagonal-tensionbeam

may be double (on both sides of the web) or single; both types are always
fastened to the web. The buckling strength of the uprights cannot be
computed hmediately by or&Lnary column formulas because the web restrains
the uprights against buckling. As soon as ~ upright begins to buckle out
of the plane of the web, the tension diagon~s crossing the upright become
kinked at the upright, and the tensile forces-in the diagonals develop
components nomnal to the web tending to force the upright back into the
plane of the web, as indicated by the auxiliary sketch in figure 6(a).
The restoring force exertedby the diagonal-tensionband upon the upright
is evidently proportional to the deflection (out of the plane of the web)
of the upright at the point where the diagonal crosses it. The upright
is therefore sub~ected to a distributed transverse restoring load that is
proportional to the deflection; the problem of finding the buckling load
of such a compression member is well-known, and methods of solution may
be found in reference 3, for instance. Wagner has given the results of
calculations for double uprights with clamped or pinned ends in the form
of curves (fig. 6(b)), showing the ratio %& as a function of the

ratio d/h, where Pu is the buckling load of the upright and ~ the

Euler load, that is, the buckling load that the same upright would carry
if it were a pin-ended column not fastened to the web.

The assumption of clamped ends would be justified only if the ends
of the uprights were fastened rigidly to the flanges and if, in addition,
the flanges had infinite torsional stiffness. Usuallyj beam flanges
have a rather low torsional stiffness and thus do not justify the assump-
tion of clamped ends for the uprights. Tests of beams with very thin
webs have furthermore shown that even Wagner’s curve for pin-ended double

.
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.

,.

.

uprights as shown in figure 6(b) is entirely too optimistic for low
values of d/h. The straight line marked “Experiment” in figure 6(b)
(from reference 4) is slightly conservative for the average of the tests
available, but several test points fall so close to it that only a large
number of new tests could justify a higher curve (see Part II (refer-
ence 2)). In order to make this experimental curve applicable to
uprights not in the Euler range, it may be expressed as a formula for
reduced or effective column length of the upright in the.fom

which is valid for d < 1.5h; for d > 1.5h, of course, ~=h. In

practice, d is seldom chosen larger than h in order to keep the
flange-flexibility factor d low.

Single uprights are, in effect, eccentrically loaded columns. As
long as the load is infinitesimal,the eccentricity e is evidently the
distance from the plane of the web to the centroid of the upright. If
the uprights are very closely spaced, the web between uprights must
deflect (on the average) in the same manner as the uprights. Under this
condition, the eccentricity is equal to the initial value e all along
the upright and does not change with increase in load. The upright is
therefore designed by-the formulas used for an eccentrically loaded comp-
ression member with negligible deflection; the bending mxnent in the
upright is e%, and the stress in the fibers adjacent to the web is “

Pu

(
Uu=—1

Au

where p is the radius of gyratioq

the effective cross-sectional.area,
expression

Aue =

Approximate values of the ratio we

(a)

of the cross section and ~e is

which is evidently defined by the

Au

e2
l+— ~2

1

(22)“

/
AU are shown in figure 7 for typical

single uprights. It should be noted that the web sheet contributes no
“effective width” to the upright area under the condition of pure diagonal
tension considered here. Formula (22) would also applyto a double upright

.— -————.—. .-— ———. ———.—.——



NACA TN 266114

not
are

the

symmetrical about the web. = mst cases, however, double uprights
symmetrical; in this caseY e = O, and thus Aue = Au.

.

If the uprights were extremely widely spaced, the major portion of
web would remttp in its original plane (on the’average> i.e.~

averaging out the buckles). Consequently, the compressive load acting
on the uprights would remain in the original plane, and the upright
would act as an eccentrically loaded column under vertical loads, except
for the modification introducedby the elastic transverse support
furnished by the web. However, barring freak cases, extremely wide
spacing of the uprights would result in the nonuniform distribution of
diagonal tension shown in figure 5(b). In this configuration,the direc-
tion of the compressiw load (as seen in a plane transverse to the plane
of the web) is determined essentially by the configuration of the web in
the vicinity of the upright-to-flange joint; conditions are therefore
again similar to those in the case of the closely spaced uprights. On
the basis of this consideration, fomulas (21) and (22) are being used
for all single uprights regardless of spacing, and the available experi-
mental evidence indicates that this practice is acceptable at the present “
stage of refinement of the theory.

2.5. Shear deformation of diagonal-tensionweb.- The shear deforms- M

tion of a web working in pure diagonal tension is larger than it would
be if the web were working in true shear (a condition that could be
realizedby artificially preventing the buckling). The effective (secant)
shear modulus Gp~ of a web in pure diagonal tension can be obtained by

a simple strain-energy calculation as follows: Consider one bay of the
web system and denote by 7 the shear deformation of the bay. The
external work performed during loading is

The titernal strain energy stored is

W2 = # %2~dth+— AUh+@AFd
2Ee E

Now a, ~, and @ can be expressed as functions of S by

to (13); after transposing terms and canceling, there results

formulas (lI.) t

the formula

.
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E 4
= tan% + = COAL._. __+Aue

% k% ~F

which may be transformed with the aid of equation (15) into

.

%Em( )—=22+=13in%+Ec&Ct
Aue ~F

or

( ).22 %? ‘%.— - —
?% u a

(23a)

(23b)

(23c)

In beams of the type considered here, the flanges are usually so heavy
that the term containing the flange area is negligible. Equation (23a)
can then be simplified to

E 2—=—

‘Pm sin2a

When the uprights as well as the flanges are
becomes equal to 45°, and

E
‘Pm = ~

(23d)

very heavy, the angle a

(23e)

3. Engineering Theory of Incomplete Diagonal Tension

The two preceding sections presented “analytical”theories of the
shear-resistantbeam and of the beam in pure diagonal tension. An
engineering or “working” theory wild.now be developed that connects these
two analytical theories. It may be considered as a rethod of interpo-
lating between the two analytical theories, guided by an emptiical law
of development of the diagonal tension. The purpose of this section is
to present the engineering theory, to explain physical considerations
and certain details, to describe (where it seemed advisable) how empirical
data were obtained, and to indicate the accuracy of the method. !l?hesec-
tion thus forms the basis for section 4, which gives in concise form all
the information needed for actual analysis. This division of subject

,.

— ——— —.—
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material between two sections entails some disadvantages for a first
reading; however, the advantage of having section 4 in the form of a
“ready reference” section for practical application, unencumbered by
background material, is felt to outweigh the disadvantage.

3.1.General considerations.-When a gradually increasing load is
applied to a beam with a plane web, stiffened by uprights and free from
large imperfections,the following observations maybe made: At low
loads, the besm behaves in accordance with the theory of the shear-
resistant beam; the web remains plane and there are no stresses in the
uprights. At a certain critical load, the web begins to buckle; these
buckles are almost imperceptible, and very careful measurements are
necessary to define the pattern. As the load is increased more and
more, the buckles become deeper and more distinct and the buckle pattern
changes slowly to approach more and more the pattern of parallel folds
characteristic of well-developed diagonal tension (fig. 2). The process
of buckle formation and development is accompanied by the appearance and
development of axial stresses in the uprights.

It is clear, then, that the theory of the shear-resistantbeam can
be verified directly by stress measurements at sufficiently low loads;
it is furthermore possible (although rare) that a beam may remain in the
shear-resistant regime until web fracture or some other failure takes
place. The state of pure diagonal tension, however, is a theoretical
limiting case; a physical beam may approach this limit fairly closely,
but it can never reach the lhit, because some failure will take place
before the kbnit is reached. A direct experimental verification of the
theory of pure diagonal tension is thus impossible. Fortunately the
theory is so simple (as long as the effect of flexibility of the flanges
may be neglected) that experimental verification is unnecessary.

Physical intuition suggests, and measurements have confirmed, that
the state of pure diagonal tension is approached fairly closely when the
applied load is several.hundred thes the buckling load. Beam webs that
fail at loads several hundred times the buckling load are encountered in
practice, but they are the exception rather than the rule. For the great
majority of webs, the ratio of failing load to buckling load is much less,
and the theory of pure diagonal tension gives poorer and poorer approxi-
mations as this ratio decreases.

h order to improve the accuracy of the stress prediction, it is
necessary to recognize that most’practical webs work in incomplete
diagonal tension, or in a state of stress intermediatebetween true shear
and pure diagonal tension. The first suggestion for such an improvement
was made by Wagner (reference~) for curved webs and was adopted by

“

others for the design of plane webs. The suggestion as applied to the
braced frame of figures 3(a) and 3(b) may be stated as follows: As the
load P increases from zero, both diagonals work initially. At a certain

“

.’

-—.



.

NACA m 2661 17

load Per, the compression diagonal will.buckle, the load in the diagonal

being Dcr. For any further increase in the load P, the load D in the

compression diagonal is assmed to remain constant and equal to Dcr.

Applied to the sheet-braced frame of figures 3(c) and 3(d), the assump.
tion may be phrased as follows: If the applied shear stress T is
larger than ( )

Tcr, OIdy the eXCeSS T - Tcr above the critical shear is

assumed to produce diagonal-tension effects.

kt T~ denote that portion of the applied shear stress T which

is carried by diagonal-tension action. The mathematical form~ation of
the assumption then becomes

‘DT=T-7cr “(1-:)
(24)

The “applied shear stress” T(=S/ht) is evidently a nominal stress, that
is to say, it does not exist physically as a shear stress.

3.2.Basic stress theOry.- The use of formula (24) improves the pre-

diction of the upright stresses, but the improvement is of significant
magnitude only for a narrow range of proportions. An improved theory was
therefore sought, with the following desired characteristics:

(1) The theory should cover theentire range of besm proportions,
from the shear-resistantto the pure-diagonal-tensionbeam

(2) The theory should be as simple as possible, becauseeach afi-
plane contains hundreds of elements that must be designed by considera-
tions of diagonal-tension action

A theory of this type has been developed in a series of steps (refer-
ences 4 and 6 to 9). This section presents that portion of the theory
which deals with the calculation of the primary stress conditions.

The applied nominal shear stress T iS Split iRtO tWO ptiS: a
shear stress 7s carried by true shear action of the web, and a por-

tion T~ carried by diagonal-tension

T =’+
s

action. Thus

‘m
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Tm = kT ; T~ = (1 - k)T (25)

where k is called the “diagonal-tensionfactor.” It may be noted that
formula (24) is a special case of this general formulation, with the
factor k defined by

Tcrk= l-—
T

(26)

by virtue of the assumption made. In the @roved theory, the factor k
is still considered to be a function of the “loading ratio” T/Tcr but

was determined empirically from a series of beam tests. The empirical
expression (reference 4) is

k=
( )

tati 0.5 loglo &
( T > ‘cr)

(27)

For ~ < 2, expression (27) is approxhated closely by the expression
‘cr

where

. . .

For 7 <’Tcr, the

shear. As the loading

k=00434(”+:“3)

~=T - ‘cr
T + Tcr

(27a)

factor k is zero and the web is working in true

ratio T/T=r approaches infinity, the factor k

approaches unity, which denotes the condition of pure diagonal tension.

Figure 8 shows the state of stress in the web for the limiting
cases (k = O and k = 1.0) and for the general intermediate case.
Superposition of the two stress systems in the general case gi~es for
the stress al along the direction

to this direction, respectively,
a and the stress a2 ~erpendicular

T(I - k)sin 2a (28a)

w

.l

●

.
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U* = ‘T(I - k)sin 2a (28b)

(For these equations, and for all equations of this section, it is
assumed that the flanges are not sufficiently flexible to produce sig-
nificant nonuniformity of stress.)

The value of k given by expression (27) is less than that given

(
by (26) except for the limiting cases ~ = 1.0 and

)
L+Co. qglis

‘cr ‘cr

fact implies that the true shear stress in the sheet must develop values
larger than Tcr, contraryto the assumption on which expression (24) is
based. At first glance, the assumption that the diagonal coJIIPressive
stress does not increase beyond the critical value appears plamible,
particularly if one bears in mind the picture of the braced frame in
figure 3(b). However, it is well-known that deeply corrugated sheet can
carry very high shear stresses before collapsing. In the light of this
fact, it does not seem reasonable to assume that the hardly perceptible
buckles which form in a web loaded just beyond the critical stress
deprive the sheet innnediatelyof all ability to carry any further increase
in diagonal compressive stress and consequently any increase in true

. shear stress.

If the sheet is thus assumed to be able to carry diagonal compressive
stress, it is consistent to assume that it can also carry compressive
stresses parallel to the uprights or-to the flanges; in other words, some
effective width of sheet should be assumed to cooperate with the uprights
and the flanges. Trial calculations for the upright stresses developed
in test beams gave satisfactory agreement when the effective width working
with the upright was assumed to be given by the expression

de
—=0.5(1 -k)
d (29)

The effective width of 0;5d immediately after buckling maybe thought of
as produced by the sinusoidal distribution of stresses indicated in fig-
ure 9. The assumption of linear decrease with k was made as the
simplest expedient possible.

With the assumptions made so far, the formula for the stress in an
upright is obtained by modifying formula (12), which is valid for pure
diagonal tension, to read

%=-

.

kT tan a

Au
-+ 0.5(1 - k)
dt

(30a)

————.-. . —. . -—.
— .—–
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Similarly,formula (13)for the flange stress produced by the diagonal
tension becomes

kT cot uq..
2AF
~+ 0.5(1 - k)

Formula (14) for the angle a may be written in the modified form

(3ob)

(30C)

This form is more general than formula (14), because it is applicable
when web, flanges, and uprights are made of,materials having different
Young’s moduli. The strains appearing in formula (30c) are defined by

~F=* au
; 6U.T ; 1(qE=-

E
- I@

with the stresses al and cr2 defined by equations (28a) and (28b);

therefore,

[

2kET=— +
E Sill&

For practical purposes, sin

1(1 - k)(l + ll)Sin2a (30d)

2a may be taken as unity, because the
angle a lies between 45° &d 38° for almost all reasonably well designed
webs. Expression (30d) then becomes

.

(3oe )

All charts and graphs for plane diagonal tension shown in this paper were
calculated by use of this approximation. (For curved webs, the approxi-
mation is too inaccuratebecause the angle a assumes much lower values.)

It might he noted that the buckle pattern hmediately after buckling -
is not a pattern of paraUel folds; this pattern is only approached asym-

~ totically. Consequently, the term “angle of folds” has, strictly speaking,
no meaning for incomplete diagonal tension, but it is sometimes used for ,

the sake of brevity instead of”the more correct term “angle of diagonal
tension.”

.——.—— —.— ——
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The stress component T(1 - k) sin 2a in formula (28a) arises from
the true shear existing in the web. This component affects the diagonal
web strain e and thus the angle u. The state of diagonal tension
produced by the component kS of the applied shear load is therefore
not a state of “pure” diagonal tension. It is a state of “controlled”
diagonal tension in which the angle a is affected by the simultaneous
presence of a true shear stress in the &b. In order to bring out this
distinction where necessary, the following set of synibolsis used:

m?. “controlled” diagonal-tension component of the total stress
system when O <k <1.0

(for incomplete diagonal tension) total stress system
when O <k <1.0

Pm (for pure diagonal tension) stress system when k = 1.0

.

.

.

The “coupling” between diagonal tension and shear in the IDT case
makes it impossible to calculate the angle a directly, as in the
PDT case. Equations (30) must be solved by successive approxbtions.
A value of a is assuqed, and equations (30a), (30b), and (30d) are
evaluated. From the resulting stresses, the strains are computed and
inserted into equation (30c). If the angle computed from (30c) does
not agree with the assumed angle, a new computation cycle is made with
a changed value of a. With a little experience, three cycles are
usually sufficient. For most practical problems, the necessity of going
through this procedure has been eliminatedby the preparation of a chart
(section 4) which gives the answer directly for beams with flanges
sufficiently heavy to make EF negligible compared with e.

In keeping with the separation of the total stress system in a web
into a shear part and a diagonal-tensionpart (expressions (25)), the
shear deformation of a web maybe separated into corresponding parts

7~’7s+7~

With 7 = ~ and T = 1, this relation becomes

1 -k+k——

$=G%T
(31a).

-. -——— ———————---——— -—— -— —–——. — ———.- __—_
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where ~ is

appropriate to
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evaluated by using formula (23a) in the modified form

the M’ case

4+=—
sin%z

tan%
+

‘Ue~+ 0.5(1 - k)

cot%

2AF
(31b)

~+ 0.5(1 - k)

~ most beams, the flange area is sufficiently large to permit neg-
lecting the last term lnfo=a (31b). With this simplification,
the ratio ~/G becomes a function o< the two parameters AUe/dt and

k (or T/Tcr) and can therefore be given on a stiple graph (section 4).

b some rare cases, it may be desirable to estimate the shear defor-
wtion up to the failing load of the beam. For some materials, it will
then be necessary to multiply ~ by a“plasticity correction factor. “

A graph showing this factor for 2@-T3 sheet is given in section 4. The
graph represents an average curve derived from a series of tests on .
square panels, st~ened by varying amo~ts to produce dfiferent de~ees
of diagonal tension.

3.3. Remarks on accuracy of basic stress theory.- In the strength

design of webs, reasonably-accurate results maybe achieved with the aid
of empirical tits without benefit of a theory of diagonal tension. The
uprights, however, cannot be designed with any degree of reliability
without benefit of such a theory. The appraisal of a theory therefore
should concern itself primarily with the accuracy of predicting the
upright stresses.

The engineering theory given in section 3.2 contains two main elements
strongly qffecting the upright stresses that require verification: expres-
sion (2’i’)for the diagonal-tension‘factor k and expression (3) for the
effective width of sheet. It has not been considered important to date
to attempt separate verification of these two items; special test speci-
mens with construction features!not.representative of actual beams would
be req@red, and the elaborate @strumentation necessary would preclude
the possibility of maan checks ov’era wide range of proportions. The
method actually chosen was to measure the upright stresses in a series
of beams. Such measurements constitute only a check on the accuracy with
which expressions (27) and (29), used in conjunction, predict the upright
stresses, but this type of check is considered reasonably satisfactory .
except perhaps for thick webs.

The direct evidence used originally to establish the empirical A

relation (27) and to chose simultaneouslythe assun@ion (29) was obtained
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by analyz~ the upright stresses measured on 32 beams tested by the
I?ACA. (See Part II (reference 2).) The criterion used for fixtig the
relations was that no unconservative (low) predictions of upright stress
should result for one test beam as long as the load was below about
2/3 of the ultimate. It was possible to fulfill this criterion with-
out being unduly conservatism on the average (see Part II for details).
On the average, the predictions were about 10-percent conservative (for
loads below 2/3 of the ultimate). In 20 percent of the cases, the pre-
dictions were about 20-percent conservative. In nume than half of the
cases where the prediction was 20-percent or more conservatism,the
upright stress was quite low at 2/3 load (about 7 ksi); the estimated
probable accuracy of the upright stress under thim condition was about

. 10 ~?rcent.

At high loads,.predictedvalues of the upright stresses were con-
siderably lower thanthe observed values for some beams”. Analysis of
the data - more particularly those obtained later on thick-web beams -
tended to indicate that the predictions wouldbe low when the shear
stress in the web exceeded the yield value. The explanation is probably
that yielding of the web has’a double effect: It causes the effective
width of sheet cooperating with the uprights to decrease more rapidly
and it causes the diagonal tension to develop qmre rapidly than in the
elastic range. No method of correcting for these effects of yielding
has been developed as yet.

Errors in predicted upright stresses do not entail errors of the
same magnitude in the predicted failing loads of beams. The first reason
for this fact is that the upright stresses increase at a higher rate than
the load. The second - usually more @ortant - reason is that any over-
estimate of the upright stress resulting from an error in k will be
accompanied by an overestimate of the allowable stress, because the
allowable upright stresses depend on k. For instance, for the two beams
used as numerical examples in section 7, an overestimate of the upright
stress by 10 percent is accompanied by an overestimate of the allowable
stress by 7 percent, and thus by only a 3-percent overestimate of the
failing load of the entire beam. As a result, errors in the predicted
upright stresses appear to be overshadowed by the uncertafities existing
at present in the prediction of the allowable stresses; until these
@certainties are reduced, corrections for the errors mentioned in the
preceding paragraph maybe of small value. It is also pertinent to
observe that the measurements of upright stresses at high loads are not
reliable in some cases.

3.4. Comparison with analytical theories.-Any analytical theory of-
. incomplete diagonal tension is unavoidably complex, and attempts to

develop such a theory have been made only faiily recently. Koiter has
developed approxhate solutions (reference 10) for a beam in which the
uprights are not connected to the web; they act thm purely as compression

.-

_.._— -—. -— ———.———
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posts and do not influence”the buckling of the web.
lations made by Koiter for several values of AU/dt

stresses somewhat over 20 percent in excess of those

NACA TN 2661

Comparative calcu-
give upright

given by the engi-

neering theory when ~ = 8; for ~= 100, the excess’is of the order
Tcr ‘cr

of 5 percent. The excess stresses may be explained qualitativelyby the
fact that the web does not furnish any contribution to the effective area
of the upright if the upright is not connected to the web, as assumed by
Koiter; the discrepancy obviously decreases continuously as the ratio

‘/Tcr increases. In view of the shplif@ng assmnption of disconnected

uprights made in the theory, the agreement may be considered as satis-
factory. The effective shear modulus calculated by Koiter is somewhat
lower than that calculated by the engineering theory, as would be
expected. For the limiting case of infinitely stiff uprights, the dif-
ferences are 9 and 5 percent for T/Tcr equal to 8 and 100, respectively.

For uprights of practical sizes (Au/dt “of 0.67 and 0.18), the differences
are at most 3 percent.

A physically more realistic theory was developed by Denke (refer-
ence Xl), who assumed a buckle pattern consistent with the fact that the
uprights are connected to the web. Calculations made by Denke (refer-
ence 12) for a series of 28 NACA test beams show in almost all cases
somewhat lower upright stresses than predicted by the engineering theory.
This Mplies rather close average agreement with the test results because
the engtieering theory is conservative on the average (having”been adjusted
to avoid unconservative predictions in any one beam). The predictions by
Denke’s theory were slightly unconservative in some cases; significantly
unconservative predictions (about 30 percent) were made for two beams
with very low stiffening ratios AU/dt, a fact that maybe of importance

in the application of the theory to thick-web beams.

Koiter’s theory was intended to apply primarily at large loading
ratios but was considered by him to be reasonably applicable at loading
ratios down to unity. Iknkels theory was set up from the beginning too
cover the entire range of loading ratios from unity to infinity. Such
a wide scope of the theories could be obtained only by rather severe
simplifying assumptions. A different line of attack was chosen by
Levy (references 13 and 14), who used a more exact theory at the expense
of being restricted to low loading ratios. A comparison of upright loads
calculated by Levy’s theory and calculated by the engineering theory is
shown in figure 10. Upright loads rather than stresses are shown to
permit including the limiting case of infinite upright area. The loads
shown are based on the maximum stress, which occurs-in the middle of the
upright. The maximum stress will be discussed in the next section; its
use in figure 10 does not affect the comparison and permitted direct use

(

Au
of Levy’s data without conversion. For the case

)
—= 0.25; Q= 0.4 ,
dt h

.—— .—— .— —
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the two theories agree closely. For
theory gives somewhat unconservative
Levy’s theory. Test results, on the
that the engineering theory tends to

the other two cases, the engtieering
(low) stresses as comptied with
other hand, have indicated so far
give somewhat conservative values

for the upright stresses, but the number of reliable tests is small for
low values of the ratio T/Tcr (about 2), where the percentage dif-

ferences are largest. It is an open question, therefore, which theo~
is closer to the truth.

3.5. Amplification of theory of upright stresses.- Under the con-

dition of pure diagonal tension (and constant shear load along the length
of the beam), the upright stress au is constant along the length of the

upright. However, it had long been noted in tests that this stress
actually has a maximum value % at the middle of the upright and

decreases towards the ends, a fact referred to as “gusset effect” (refer-
ence 7). The stress ~ given by the engineering theory is the average

taken along the length of the upright. (This is the manner in which the
experimental data used to established expression (27) for k were
evaluated.)

Section 3.,9discusses the observation that most upright failures in
practical beams canbe ascribed to a local-crippl~ type of failure. It
seems reasonable to assume that the maximum stress w- is a better

index for such a type of failure than the average value ~. This assump-

tion is supported by the observation that all attempts to base an empirical
formula for the allowable value (causing failure) of the upright stress
showed much larger scatter when uu was used as index than when W-

was used.

The variability of au, or the ratio ~lauj is largest just after

buckling of the web and decreases as the diagonal tension develops. The
accuracy and the scope of the available experimental data are not adequate
to establish the ratio au- au empirically. On the other hand, the

/
stress conditions just beyond buckling are reasonably amenable to a theory
of the type developed by Levy (references 13 and 14). The calculations

( )
given in these two references cover two configurations $ = 0.4 and 1.0 .

For lack of better information, the ratio _ ~ is assumed to vary
/

linearly with the ratio d/h; with this assumption, the two calculated
sets of values fix the relation. The calculations cover the range of

T/rcr up to about 6 “or8 and thus provide only a narrow range of varia-

tion of the factor k; under these conditions, it is not considered’

. .—-.—— — ——-- _—.— ——.—. -—
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justified to make

/%tion of ~W
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a more elaborate assumption than that of linear varia-
with k.

The resulting graph (section 4) thus rests on a limited set of data
smd should be considered as tentative. Such experimental evidence as
exists from beam tests tends to indicate that the ratio obtained from
the ~aph is probably somewhat less reliable than the basic stress
theory itself.-

3.6. Calculation of web buckling stress.- Theoretical fotias for

the critical shear stress Tcr are available for plates with all edges

simply supported, all edges cl~ed> or one Pafi of edges s@l-Y sup-
ported and the other pati clamped. With an accuracy sufficient for all
practical purposes, a formula cover- ~ these cases Cm be mitten
in the form

‘cr,elastic= %~(;~~h + i(~ - ‘h).(:fl (32)

where kss is the theoretical buckling coefficient for a plate with

simply supported edges having a width d and a length h (where
h >d). me coefficients ‘h and ‘d are coefficients of edge restraint~

taken as R = 1 for simply supmrted edges and R = 1.62 for clamped
edges; the subscripts denote the edge to which the coefficient applies.
Formula (32) represents all available theoretical results (references 3
and 15 to 17) with a maximum error believed to be less than 4 percent; a
more precise evaluation of this error is not possible at present because
some of the published solutions for plates with mixed edge conditions
are known to be somewhat in error because of an errcuyous choice of buckle
pattern (reference 18), but the correct values have not yet been computed.

In actual beam webs, the edge supports are furnished by the flanges
and the uprights; the panel edges are thus neither s~ly supported nor
clamped, and the actual edge conditions may or may not lie between these
two conditions. Some available theories consider the effect of bending
stiffness of the uprights, but they stCKl give results cliffering over
100 percent from test results over a considerable portion of the prac-
tical range of proportions. (The most important reason for the weabess
of the theory is probably the one discussed in section 3.9.) For the
time being, calculations of Tcr fOr ~agonal-te~ ion ~lysfS are

therefore based on formula (32), ~plemented by e~~fc~ restra~t
coefficients which are functions of the ratio tU/t (section 4). It
is probable, however, that theoretical coefficients based on an adequate , ‘,
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theory should eventually replace the empirical coefficients, particularly
for beams designed to fail at low ratios of T/Tcr (say less than 4).

When the uprights are much thinner than the web, the coefficient Rh
becomes very low. In such a case, the critical stress calculated by -
formula (32) maybe less than that calculated with complete disregard of
the presence of the uprights. The latter value should then be used,
because low values of the empirical restraint coefficients (less than
about 0.5) are not covered by tests and thus are unreliable, and because
formula (32) obviously gives meaningless “iesultswhen ~ approaches

zero.

“ Fomnula (32) is valid only as long as the calculated critical stress “
is below the limit of proportionality for the material used. 13eyondthis
limit, corrections based on the theory of plastic buckling must be applied;
the theories presented in references 19 and 20 have been used to compute “
the correction curves given in section 4 for bare and clad webs,
respectively.

3.7. I?ailureof the web.- As is well-known, the engtieering beam
theory is not entirely capable of predicting the failure of beams, even
of simple cross sections; it must be supplemented by empirically deter- -
mined npduli of,rupture. In an analogous manner, the engineering theory
of incomplete diagonal tension must be supplemented by empirical failure
moduli. This section deals with the failure of webs. Since a modulus
of rupture is a fictitious stress, the method of computing the stress
must also be specified and constitutes an integral part of the definition
of the modulus.

The stress
or as a nominal
here. The peak
forrmila

in a web maybe expressed either as a nominal shear stress
diagonal-tension stress; the first alternative is used
nominal.stress in a sheet panel may then be defined by the

,

T1ma =
(

T 1 + k2C1)(1 + kC2)

In this expression, Cl is a correction factor to

that the angle a of the diagonal tension differs
mula (11), for k = 1

c1 = 1
-1

sin 2a

(33a)

allow for the fact

from 450; by for-

——.. . . 1 —
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The factor C2 is the stress-concentrationfactor arising from flexi-

bility of the flanges and introduced in equation (17). (Both factors
are given graphically in section 4.) The effect of factor C2 is

.

assumed to vary linearly with k in expression (33a) for lack of better
data. The effect of factor Cl is assumed to vary with the square of k

on the basis of test results on curved diagonal-tensionwebs, in which
the angle a varies over a wider range than in plane webs. In the plane ‘
webs under consideration here, the angle is usually near ~“, and the
factor Cl is uninlportazlt.

In curved webs, the determination of the angle a (and thus the
determination of Cl) is somewhat tedious. Consequently, a slightly

different procedure for calculating the web strength is used that may
also be applied to plane webs, with results differing at most by 2 to
3 percent from those obtained by the first procedure. (This error is
less than the scatter found in tests of nominally identical webs.) In
the second procedure, the peak web stress is written as nominal shear
stress ti the form

‘max = T(l + kC2)

that is to say, the angle factor cl is omitted. On

the allowable stress is now no lower considered as a

.

“(33) ‘

the-other hand,

property of the
material alone but is considered to be a function of the angle m>

the angle that the folds would assume if the web were in a state of pure
diagonal tension.

In order to determine the allowable stresses, a series of 97 tests
was made on long webs of 2kS-T3 and Alclad 75S-T6 aluminum alloy (refer-
ence 21). The external loads were applied as equal and opposite axial
forces to the flanges; the loading was thus essentially a pure shear
loading. Tbe diagonal-tension factor k at failure was varied chiefly
by using different h/t ratios of the webs. The rivet factor

(
1- Diameter

Pitch )
was varied from about 0.6 to about 0.9; 0.6 is about the

iowest value likely to be encountered in practice, 0.9 marks roughly the
region where rivet failure or sheet bearing failure becomes critical.
The’uprights were heavy but were not connected to the web except for the
lowest values of k and were not connected to the flanges in order to.
eliminate “Vierendeel.fru”” action.” Inmost tests, bolts were wed
instead of rivets, tith the nuts drawn up “just snug” because friction
between the sheet and the flange is a very important,but highly variable,
factor. The sheet was protected from direct contact with the bolt heads
by heavy washers. Some tests were made with the nuts tight, and older

..—
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tests with riveted panels were used to esthate the increase in strength
obtained by friction effects.

Almost all tests fell within a scatter band of -k10percent from the
average for a given value of k. The scatter maybe attributed to dif-
ferences in friction, material properties, ~d worlmanship~ the ftist .
factor probably being the largest one. About 85 percent of the tests
fell within *5 percent of the average and, at low values of k, more
than 90 percent fell within the *5-percent band. The curves of “basic
allowable” stress given in section k (denoted by *U and shown in

fig. 19) represent the line 10 percent below the average of the scatter
band; they are furthermore corrected as noted to specified material
properties (defined by the ultimate tensile strengths) which lie well
below the typical values. ‘

13ecauseof the large sizes of the flanges and uprights used in the
tests, the angle factor Cl was zero a = am =

(
450) ~d the stress-

concentration factor C2, was also zero. The tests thus established the
basic allowable values of T’-, or of T- for am = 45° (shown

as the top curves in figs. 19(a) and 19(b) of section 4). Detailed test
results are given in Part II.

The curves for values of m other than 45° tire calculated as

follows: By formula (n), the tensile stresses vary inversely with
sin 2a~; the values of T*~ for k = 1.0 were therefore calculated

by multiplying the expertiental value obtained for 45° by sin 2u. In
webs working h true shear, the allowable stress is evidently not
inflkncedby the sizes of the flanges and the uprights; therefore, &U.
CUrVeS of T*W must have as ccmmmn end point at k = O the.experi- “

mental value of .alloWble true shear stress. For any given value of

~~J t~ t~ end Pofits of the c-e w:re th~ established. me con- .

netting curve was drawn on the assumption that the difference between
the curve in question and the experimental curve for 45° varied linearly
with the factor k.

The curves for angles well below 45° are needed mostly for curved
webs rather than pltie.webs, and such expertiental confirmation as
exists for low angles was obtained on curved webs.

The name “basic” was given to those curves because they serve as a
basis for a system of computation. They determine directly the allowable
stresses for the attachment conditions that existed in the main tests
(bolts with heads protected by washers, nuts just snug). For other con-
ditions (rivets, web sandwiched between flange angles, etc.), the.basic
allowable values are mod+fied as specified in section 4 on the %asis of
auxiliary tests.

.-

—--—— _—— — —— —- --
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It should be noted that all shear stresses are based on the gross
section, not on the net section between rivet holes. This simple pro- ‘
cedure is possible because the tests disclosed an titeresting fact:
When the ratio of rivet pitch to diameter was varied (for a fixed value
of the diagonal-tension factor k), it was found that not the failing
stress on the net section, but the failing stress on the fposs section
was a constant~thin the scatter limits mentioned previously. ThIflsome-
what surprising result indicates that the stress-concentrationfactor
varies with the rivet factor in such a manner as to just offset the
change in net section. Qualitatively, the change in stress-concentration
factor agrees with that found in straight tension tests: As the net sec-
tion decreases (for constant gross section), the stress distribution
becomes more uniform, and the ultimate stress based on the net section
approaches the ulthate found in standard tensile specimens without holes.
The quantitative result that the change in stress concentration just
offsets the change in net area should, of course, be ~garded as a pecu-
liarity of the specific materials tested.

In the relatively thin sheets used b these tests, the diagonal-
*

tension folds are quite deep, and sharp local buckles form In the vicinity
of the bolt heads. H the bolt heads bear directly on the sheet, these .
local buckles cause additional stresses around the bolts that lower the
allowable shear stress. In a number of comparative tests (reference 22
and other data), the decrease was found to be about 10 percent. Rivet
heads are larger than the corresponding bolt heads and thus presumably
give about the ssms conditions as bolt heads protected by washers. The
difference cannot be shown directlyby tests because rivets have the
additional feature of setting up friction, which can be fairly well
eliminated when bolts are used by leaving the nuts loose. Use of the
“basic allowable” curves when the attachmnt is by means of rivets
would therefore imply the assmption that the rivets have lost their
clamping pressure in service but that there are no additional.local
stresses under the rivet heads even if no washers are used. Tests on
riveted panels and beams (us@ no washers) showed generally strengths
at least 10 percent hi~r than those developed with just-snug bolts
with washers.

Because the buckles in thicker sheet are less severe, one might
believe that the thicker sheet would have higher failing stresses; how-
etir, a few beam tests on sheet up to 0.2 inch thick do not support this
belief. JKU these tests, however, did fall in the center of the scatter
band or higher, so that somewhat higher allowable might be permissible
in thicker sheets.

When single uprights are used, the simplest construction results If
the web is riveted to the outside of the flange angle, because the
uprights then require no joggllng. Preliminary results indicate that *

such an unsymmArical arrangement of the web results in lower web falling

—.
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stresses if the

2.k times their

web is thick. With webs having ~ = 60 and offset by

thickness from the center line of the flanges, the web

failing stress was re.ducedby about 10 percent. On webs with ~ = 120

and more, no detrimental effect was noted.

Adjacent to an upright which introduces a heavy load into a web, ~
the web stress is not uniformly distributed over the depth of the web.
If the entire shear load is introduced at one station (as in a tip-
loaded cantilever, for instance), the efficiency of the web may be as
low as 60 percent, and efficiencies higher than 80 percent are very
difficult to achieve. The factor of stress concentration (reciprocal
of the web efficiency) cannot be estimated with any degee of accuracy
at present; even the location of the point of maximum stress (top or
bottom flange) cannot always be predicted, because it depends on the
degree to which the diagonal tension is developed. Under these cir-
cumstances, the only safe procedure is to reinforce the web by a doubler
plate in the first bay.

If the load introduced at the tip does not constitute the entire
shear load applied to the beam, or if the point of load application is
not the tip (for example, fuselage reaction in wing spar continuous
t%rough fuselage), the conditions are less severe, but some allowance
for stress concentration must be made. Also, contrary to elementary
theory, a heavy local load will produce some shear stresses in the web
outboard of the station of load application. The integral of the shear
stresses taken over the depth of the beam is, of course, zero in order
to fulfilJ.the requirements of statics.

3.8.Upright failure by column action.- As discussed in section 2.4, ‘
the web acts as a restraining medium that modifies the effective column
length. Because tests have indicated that the theoretical formulas for
the restraint action are too optimistic, an empirical formula for pure
diagonal tension has been introduced (formula (20)), and section 4 gives
a modification of this formula appropriate for incomplete diagonal
tension.

Column failure by true elastic instability is possible only in
(symmetrical) double uprights. A single upright is an eccentrically
loaded compression member. A theory for single uprights is difficult
to formulate because the eccentricity of the load is a function of the
deformations of the upright and of the web, which are very complex; the
failing stress of the upright is thus a func$%}onof the web properties
as welJ.as of the upright properties. It i(.%idently advisable that
the stress au in a single upright (formula \21)) be limited to the

column yield stress for the upright material,

_.._. .——. ——. — -— —. .— —
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In four tests of beams with very slender
half-wave tyme of failure h.SSbeen observed.
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single uprights, a two-
The wave form was clearly.-

visible at low loads and, at two-thirds of the ultimate load, the
deformations were indisputably excessive on three beams. IM a tentative
method of avoiding this situation, it is suggested that the average
stress over the cross section of the upright be limited to the allowable
column stress for a slenderness ratio hu/.2P. ~ tie is conservative

(in general) as far as ultimate strengthis concerned,
appears to be necessary in order to achieve reasonably
at limit load.

3.9.Upright failure by forced cripplin$.- Almost

but the sacr~ice
small.deformations

all failures on

uprights (double or single) of open section may be explained as being
caused by forced crippling. The deformation picture maybe described
as follows: Let the angle section shown in figure 11 represent a por-
tion of the upright. The shear buckle forming in the web forces the
free edge A-A of the attached leg to take on a wave form. The amplitude
of this wave is a maximum at the free edge and zero along the heel B-B
of the angle. If the deformations are large, then a similar wave appears
along the free edge C-C of the outstanding leg, but the amplitude is very
much smaller, because this edge is under tension, the upright being under
eccentric bending. If the stiffener were of Z-section, the line C-C
would also remain straight, and only an extremely small wave amplitude
would be noticed along the free edge of the free leg.

(The deformation picture just described probably indicates the main
reason why the existing theories of the buckling of stiffened webs often
give very poor results. They assume that the stiffener bends with the
sheet without defamation of the cross section. This assumption might
yield an acceptable result if the stiffener were weldedto the web along
the heel line B-B. Actually, it is riveted to the web along a line
between the free edge A-A and the heel line B-B. Thusj the bending
stiffness,that comes into play is more nearly that of the attached leg -
alone, rather than that of the entire stiffener.)

The physical action of a strip along the edge A-A of the upright is
analogous to that of a beam-column. The strip is under the compressive
stress ~ created by the diagonal tension> and under a lateral pressuxe

exerted by the web buckle. The problem is thus not one of elastic insta-
bility, as is true of the problems normally called local crippling.
Large deformations can and do occur while the compressive stress in the
upri~t is negligible.

No theoretical attention has been given to the problem of forced
crippling, although the possibility that forced crippling acts as a

.

“trigger mechanism” for failure had been suggested by several experi-
menters. It must be admitted that a theoretical analysis would be very .
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difficult because a large-deflection
(at least if the analysis is carried
in order to be practically useful).
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theory of plates would be required
to the ultimate load, as it should
An empirical formula has therefore

been developed that fits single or double uprights with a change in coef-
ficient (section 4). A rather large collection of data was available to
establish this formula because almost all upright failures encountered
could be ascribed to forced crippling. The cross sections included
angles and Z-sections, both with and without lips, and J-sections.

The probability of failure by forced crippling etiidentlydepends on
the “relative sturdiness” of upright and web; a stur~’~right wiIl not
be deformed severely by a thhweb. The empirical formula developed
assumes that the relative stmxliness can be measured by the ratio of
thickness of upright to thiclmess of web. Such a single-parameter
description of the complex phenomenon of forced local crippling can
obviously be no more than a first approximation and therefore cannot
give very high accuracy. The test results show a scatter band of
*2O percent. The constants recommended for design are based on the lower
edge of the scatter band.

No information is available on forced crippling of closed-section
uprights; it is doubtful whether closed uprights with flat sides offer
material advantages over open sections.

Upright sections are not infrequently chosenby the criterion that
the moment of inertia should be a maximum for a given area. This one-
sided emphasis is quite misleading; a greater moment of inertia for a
given area nwans a thinner section, which has less local bending’stiff-
ness an@ is thus more susceptible to forced crippling. In order to
demonstrate this fact, two beams (about 70 in. deep) were built, having
the same web thickness, upright spacing, and upright area, but Uffering
in moment of inertia of the (single) uprights. The moment of inertia
was doubled on the second beam, but this beam carried only 75 percent
of the load carried-by the first beam; the first beam failed by web
rupture, the second, by forced crippling of the uprights. (See Part II.)

3.10. Interaction between column and forced-crippling failure.- It

should be realized that column failure and forced-crippling failure are
not, in reality, two completely independent types of failure; forced
deformation of the cross sections will affect the colurunbehavior of the
upright. A certain amount of interaction effect is included axiomatically
in the formulas for the allowable stresses because they are empirical.
It is possible, however, that for very different proportions, or for

. different loading conditions than those that existed in the tests, some
direct allowance for interaction may be necessary. For instance, ths
uprights were, in all but a very few tests, subjected only to the com-
pressive loads arising out of the diagonal-tension action of the webs;
they were not stijected to externally applied compressive loads. In

— .——— ..— ——. —.——.— —
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cases where the compressive stress due to externally applied loati is of
tbe same order of magnitude ,asthat caused by the diagonal-tension
action, the problem of interaction between forced cripplhg and column
buckling may become serious. It might he nentioned that a forced-
crippling problem also exists when externally applied compression is the
only force acting, that is to say, the skin buckles of a stiffened com-
pression panel generally reduce the failing stress of the attached
stiffener below that of the free stiffener.

3.U. Web attachments.-The web-to-flange rivets or bolts carry a
load per inch run R“ equal to S/h for a shear-resistantbeam (k = O)
and 1.414S/h for a beam in pure diagonal tension (k = 1, see formula (lOa)).
Idnear interpolationbe$ween-these two values gives for incomplete diagonal
tension

R“ = ‘& (1 + 0.414k) (34)

.

I The,depth hR used in formula (34) is the distance between the rivet

lines in the top and bottom flanges if the rivet lines are single, or
the distance between the centroids of rivetpatterns in the most general

v

case of multiple rivet lines. ‘There is a wide-spread custom of wing
the effectim depth & instead of hR, a practice that has been found

to give deftiitely unconservative results on some test beams; in many
cases, of course, the unconservatism is sufficiently small to be covered
by the hidden factors of safety usually existing in rivet design.

“..

Literal titerpretation of the-basic concept of incomplete diagonal
tension would require that the r~vet.l~adbe.coc~idered as made up of
two components: a force (1,- k)S/li actinghorizontally, caused by
the shear component of the ltmd,-and a force ks~h cos u .(according to
formula (10)) acting at the angle ‘y.”:The two forces should be added
vectorially. The resulting formqltifor .R!’tis jnoie~omplicated,than
formula (34) and gives somewhat.lower valu&s-(excep~,.of.cotise, at
k= O andk= 1). This fofia-might.be dogsidered mdre rational than
formula (34), but this purported greater.ratioti~ty’is sp~iou% because
the factor k expresses average stress coriditlonain the panel, and the ~
conditions along the riveted edge are not averqje. Experln&tally, the
“more rational” formla has been found to be somewhat pnconservative
(see Part II) and is therefore not given here. ‘ ~

The upright-to-flange rivets simply caxry the upright load into the
flange and require no special comments. , .

The upright-to-web rivet% must be investigated for several conditions
that ju@ify some comments. .

.——
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In double uprights, the rivets must have sufficient shear strength
to permit the upright to develop its potential column strength. In
civil-engineeringpractice, where Wilt-up columns are frequent, various
rules are used to determine the required shear strength, and they lead
to widely different results. Tests were therefore made on several series
of double-angle columns (reference 23); the formula derived from these
tests (given in section 4.14) is essentially based on one of the methods
used in civil engineering, in which the shear strength is computed as
though the member were loaded not as a column, but as a beam (by a ~
distributed transverse load).

A riveted-up section evidently cannot achieve the same strength as
an (otherwise identical) mnolithic section. For the purpose of obtainhg
the formula jmt m=ntioned, the required shear strength has been defined
arbitrarily as the shear strength that will permit the riveted-up section
to develop 98 percent of the strength of the monolithic section. To be
entirely consistent, then, the usual column allowable stress should be
reduced by 2 percent; huwever, this small reduction may be omitted because
the formula for effective column length is somewhat conservative. If the
rivet strength provided in an actual case is much less than that given
by the formula, the allowable column stress must be reduced. This situa-
tion should not arise in new designs, but it did arise in a number of
the test beams designed before the formula was developed. A reduction
factor derived from the tests is.given h section 4.

With single uprights, the shear buckles in the web tend to lift the
sheet off the upright; with double uprights, the web buckles tend to
split the two upright sections apart. These actions produce tensile
forces in the rivets, and an empirical criterion for tensile strength
is therefore given in section 4. It should be noted that tensile failure
of a rivet is equivalent to tensile failure of the rivet shank only when
the head is relatively high. With low rivet heads, the tensile failure
is causedby shearing the head off axiaXly; with flush rivets, tensile
failure may be causedby the rivet pulling through the sheet. Because
flush rivets have a low tensile strength, the problem usually demands
most attention on the outside skin; it is therefore discussed somewhat
more fully in the section 9.9, which deals with the attachment of curved
webs.

The criterion for the required tensile strength of rivets is based
on rather scanty direct evidence (Part II). However, out of 135 beams
tested by manufacturers, the great majority satisfied the criterion
(which is one reason why the available direct evidence is scanty). One
large company is using a shear criterion which gives practically the
same results as the tensile criterion does for rivets where shank failure
determines the tensile strength. It is belietid, therefore, that the
criterion is dot unduly severe, although it may be conservative.

——— —z.. .. — .——— .—
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3.12.Remarks on reliability of strength formulas.- In sections 3.7

to 3.11.,the various types of failures have been discussed in a general
fashion. In section 4, specific formulas recommended for use in design
are presented. The formulas are derived from test plots forming scatter
bands and are consistently based on the lower edges of the scatter bands;
they are thus intended to give a very high de~ee of assurance that any
given beam under consideration will carry the design load. Because the
scatter bands are fairly wide, this high degree of assurance of safety
is necessarily obtained at the expense of considerable conservatism for
most beams.

The following remarks are based on the analysis of 64 beams tested
by the NACA, 135 beams tested by five manufacturers, and about lW NACA
tests made to establish the strength of webs under nearly pure shear
loading. The remarks are rather general; a more detailed discussion is
given in Part II.

The’degree to which the fo-as ffii~ the fitended PWose Of
safe design may be characterized by the following statement: It .iS

.

estimated that predictions unconservative by more than 2 percent should
occur in less than 5 percent of all cases, and predictions unconserva-
tive by more than 5 percent should occur only with negligible frequency.

.

Excluded are local regions where large loads are Introduced-tuulbeams
with very flexible flanges (cd> 2.5).

,,.. ... . .

The scatter exhibited in web-rupture tests maybe ascribed to the
variations of three factors:

(1) Material properties

(2) LOcal stress conditions around rivets or bolts

(3) miCtiOn %etween sheet and flange

In the NACA tests on webs under pure shear loading, the material prop-
erties were fairly uniform, and individual corrections were made. The
webs were attached by bolts, with the nuts carefully adjusted to be
just snug; the friction between the sheet and the flange was therefore
small. Neverthelessj the width of the scatter band was about i10 percent,
which must be attributed mostly to variations in item (2). In beam tests,
then, the failing strengths of webs maybe expected to average 10 percent
higher than the recommended allowable values adjusted to actual material
properties, and occasional mlues 20 percent ~@er t- the allo~bles
may be fouud. An additional increase above the allowable may be realized
from the portal-frame effect (see appendix).

.

It maybe remarked that the procedure of correcting for actual .
material properties is not very accurate. This correction is comnonly
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based on the tensile strength developed by a coupon of standard shape.
Such a single tensile coupon neither evaluates possible anisotropy, nor
does it evaluate compressive properties; these factors should be evaluated
because shear is equivalent to tension and compression at k450 to the axis.
Furthermore, the standard tensile test does not evaluate the static notch
sensitivity of the material. Fragmentary test evidence indicates that
an increase in tensile strength brought about by a deviation from the
specified heat treatment may be more than overbalanced by an increase of
the static notch sensitivity. The standard tensile test therefore does
not appear to be a very reliable index for correcting the strength of a
web that fails at rivet holes, although its use is probably preferable to
making no correction.

Plots of upright stresses causing failure by forced crippling show
a width of scatter band of *2O percent. Thus, the average of a suffi-
ciently large number of tests of different designs may be expected to

be~= 1.25 times higher than the recommended allowable values, and
0.8

occasional uprights may develop 1.5 times the allowable value. For
uprights failing by column action, the data available are insufficient
to establish a width of scatter band. Taken at face value, however,
they appear to indicate about the same width of band as for failure by
forced crippling. The width of the scatter bands for upright failure
is probably caused largely by inadequacy of the empirical formulas, and
only to a very minor extent by variation of material properties. Con-
sequently, higher allowable stresses would seem acceptable if they are
verified for any given case by a specific test.

It should be remarked that upright failure at a load 1.5 times the
design load is, of course, possible only if the web also develops
1.5 times the design load. In a well-designed beam, such a contingency
should not arise because the scatter band for web strength is much
narrower. Many of the test beams under discussion here,,however,were
deliberately built with overstrength webs in orderto obtain data on
upright failure.

A discussion of the accuracy of strength predictions would be incom-
plete without some mention of pitfalls in test technique.

If ordinary hydraulic jacks are used to apply the load, and the load
is measured by measuring the oil pressure, calibration tests must be made
to check for friction in the jack. (Values up to 40 percent have been
measured.)

If the beam tested is a cantilever, the slope of the beam axis at
the tip may be quite large in the last stages of the test. The force
applied to the jack is then inclined, and the horizontal thrust com-
ponent may greatly increase the friction in the jack. This component

—.. . . . ———. ——._ .—_ .—.—— —
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also falsifies the bendi& moment in the beam and should be eliminated
using rollers. Rollefisshould also be used when the beam is tested as
“simple beam” on two supports; a beam bolted to two supports cannot be
considered as a “simple beam” when the deflections are large.

by
a d

When individual beams are being tested, it is almost always neces-
sary to provide supports against lateral failure. Care is necessary to
reduce the friction against these supports. Thick-web beams roll over
with considerable force and thus produce considerable friction against
fixed side supports. Wooden guides are objectionable became there is
danger that the be= flange may dig tito the supports and hangup.

3.13.Yieldlng.- According to the official design rules, the stress
in a structural member should not exceed the yield stress when the
structure is subjected to the design yield load. For members subjected
to axial stress, such as spar caps, the application of the rule is clear
and simple. The stress can be”calculated or measured, M necessary;
stress peaks due to bolt holes or similar discontinuities are so localized
that they are neglected by comnon tacit consent. The allowable yield -
stress either constitutes a part of the official materials specifications,
or it may be measured by a well-defined and readily applicable procedure.
For shear webs, however, the situation is much less clear. Except in “
the rare case of a truly shear-resistantweb, the stress system is com-
plicated, and the allowable yield stress is not coveredby the specifi-
cations. The suggested procedure which follows is an attempt to
formulate a simple procedure consistent in its main features with that , “
used for sxially stressed m’enibers.

The nominal web stress givenby formula (33a) is used to define the
stress existing in the web. ‘(Fo~a (33b) could be used just as well;
the reason for using (33a) in this discussion is given subsequently.)

ti the basic case of a pine-diagonal-tensionweb having factors Cl

and C2 equal to unity, the nominal web shear,stress is equal to one-

half of the tensile stress (formla (Ii), with & = 450). Consequently,
the allowable yield value of the nominal web shear stress is one-half of
the specification tensile yield stress of the web material. For a web
working in pure shear, the procedure for establishing an allowable yield
value is somewhat arbitrary, because the standard materials specifications
do not specify a shear yield stress. However, typical values of shear
yield stress are often suppliedby the materials manufacturer. While
these values are not obtained on sheet material and are thus open to
some question, they are probably acceptable for the purpose on hand.
The typical shear yield stress maybe converte~ into an allowable value
by multiplication with the ratio of specification tensile @eld to typical -
tensile yield stress. With the allowable values of the nominal web shear
stress established in this manner for k = 1.0 (pure diagonal tension) .

.— — . . ——
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and k = O (pure shear),
can be estimated by using
guides; this procedure is

39

their magnitudes for intermediate values of k
the curves for the allowable ultimates as
evidently approximate but should be suffi-

ciently accurate. A curve established in this manner is given in sec-
tion 4 for 2hs-T3 material.

A brief investigation shows that the criterian for yielding of the
web overrides the ultimate strength criterion for 2hS-T3 alloy only
under a special cotiination of factors (ultimate alJowable based on
tight rivets, ratio of design yield to design ultimate load 0.74 according
to Navy Specifications). For 75s-T6 alloy, the c- of allowable yield
stress lies above the “basic allowable” ultimate stress and therefore
cannot override the ultimate strength criterion.

The procedure outlined here agrees fairly well with the average of
a number of experimental yield loads determined by several methods in
manufacturer’s tests, but there is a.large scatter for the thinner webs
(t <0.06i n.). Most of the scatter can be explainedby the fact that
the methods used depend on judgnent rather than on measurement. A method
of this nature may give reasonably consistent results if applied by one
skilled individual, or by a small group of individuals working in close
cooperation within one organization. The same method used by a different
organization, however, may give widely differing results. (Most of the
thick-web data analyzed were obtained within one organization and were
reasonably consistent.)

The reason for defining the web stress by formula (33a) rather than
by formula (33b) is that only one curve is needed to define the allowable
stress. The use of fo~a (33b) would require that a family of curves
of allowable yield stress be constructed, in the same manner as the
curves of tiowable ultimate stress (see section 3.7).

In practice, “detectablepermanent set” has not iMrequently been used
in place of the yield criterion. This practice would correspond to using
the proportional limit, rather than the yield stress, if sensitive means
of detection are employed and consequently seems inconsistent with the
‘designpractice for such members as spar caps. “Individualcompanies may
use such conservative rules as a matter of design policy. Conservative
yield al.lowablesimply some weight penalty but decrease the possibility
of unanticipated yielding due to local stress concentrations not taken
into account in the stress analysis. In very thin webs, for instance,
yielding may occur because of compression in the unsupported region
under a joggled upright if the joggle is long; stress concentrations
also occur in the web corners at uprights through which large local loads
are introduced into the web.

The general criterion that “there shall be no permanent set” is
empty until it is supplemented by a specification as to what quantity

—_ —.. . . ____ _———.—_ ———. .—. ———
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.
shall be measured in order to determine whether a permanent change has
taken place. In order to make the result independent of the measuring
instrument used, the description “detectable set” shouldbe replaced by
a quantitative definition. W order to srrive at a decision as to what
quantity should be measured, and how much permanent change should be
permitted, it willbe necessary to consider why permanent set is not
desired. The answer to this question maybe given by aerodynamic or
functional rather than purely structural considerations. These con-
siderations indicate that a host of problems arises as soon as an
attempt is made to refine the methods for designing against permanent
set.

—
.——
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4. Formulas and Graphs for StrengthAnalysis of Flat-Web Beams

No attempt should be made to use the following formulas until
section 3 has been carefully read.

‘\

4.1. Effective area of upright

(a) Ihible (symmetrical)uprights:

Aue = Au

(no sheet included in Au)

(b) Single uprights:

.

(no sheet included

e distance from

P radius of
inertia

An estimate of

Aue =
Au

e2
1+

()F

in Au)

median plane of web to centroid of cross section

~ation of cross section (pertainingto moment of
about centroidal axis parallel to web)

the ratio AuelAu may be made with the aid of figure 7.

(c) Indefinite-widthuprights: When the outstanding leg of an
upright is very wide (for example, when a bulkhead between spars’,is
flanged over and riveted to the spar webs), consider Aue as consisting

of the attached leg plus an area 12tu2 (i.e., effective width of out-

stand@ leg is IZtu).

(d) Uprights with legs of unequal thickness: Use the thiclmess of
the leg attached to the web to determine the ratio tult (required for

fo~a (36) or (37), section 4.1o or 4.IL).

———.—L-- —.——
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4.2. Critical shear stress

In the elastic range, the critical shear stress is given by for-
mula (32), which takes the alternative forms

‘cr,elastic = ‘&&)2&+ ~(’h - ‘d)(~fl

kss from figure 12(a)

(If’ ~>lL-, read abscissa of fig. 12(a) as &-/&. )

N,% “clear” dimensions (see fig. 12(a))

(dC < %)

(dc > hc
)

‘d,% restraint coefficients from figure 12(b). (Subscript h
refers to edges along uprights; subscript d to edges
along flanges.)

With Tcr,elastic known, find Tcr from figure ~(c).

Note 1: When attached legs of double uprights are crowned so as
to touch web only along rivet line, use d instead of dc.

Note 2: If Tcr calculated by the first formula is 1?ss than

‘cr calculated with the presence of uprights disregarded, use the

latter value.

/.

*
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4.3.Nominal web shear stress

The nominal web shear’stress is calculated by the formula

J%
~t

where

%7 web shear force (external shear minus vertical component of
flange forces)

,

For unusual
~ for use with
diagonal-te~ion

I

td—=
Rh

43

proportions, use formula (3). When calculating I and
this formula, multiply web thickness by (estimated)
factor k.

4.4. Diagonal-tension factor

The diagonal-tensionfactor k is obtained from figure 13, with

o.

men ~< 2, use formula (27a).

4.5. Stresses in uprights

The ratio cru/T can be found from figure 14 if the beam flanges

are reasonably heavy. If not, use procedure described near end of
section 3.2.

The stress au is the average taken along the length of the upright.
(For a double upright, w is uniform over the cross section; for a

single upright, ~ ,is the sfress in the median plane of the web along

the upright-to-web rivet line.) “

The maximum value of ~ occurs at midheight; tti ratio ~/”u

is givmby figure 15. ,

—— -. —-
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4.6.hgle of diagonal tension

The angle a of the diagonal tension is found with the aid of fig-
ure 16(a), M it is destied, by using the ratio cru/T obtained previously

(section 4.5). The recommended procedure for finding the allowable web
stress re@es use of the angle m, which iS found by e~tion (15);

a graphical solution based’on this equation is given in figure 16(b).

sion

I
\

4.7.Maximumweb stress
.—_

The maximum (nominal) web stress & calculated by either expres-
133a) or (33b); these expressions are, respectively,

T? -.++k%,)(l+kc, )

and

Tmax = T (1 +-kc4
.

The factor Cl is taken,from figure 17, the angle a obtained from fig-

ure 16(a) being used. ~ factor ~ is taken from figure 18.

/-”

/

—
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4.8.Allowable web stresses

(For failure in web-to-flange attachment line.)

45

Figure 19 gives “basic allowable” values (denoted>y T*a~ for)
Tm that are tied as follows for different types of connections:

(a) Bolts just snug, heavy washers under bolt heads, or web plate
sandwiched between flange angles: Use basic allowable.

(b) Bolts just snug, bolt heads bearing directly on sheet: Reduce
basic allowable 10 petcent.

(c) Rivets assumed

(d) Rivets assumed

If the nominal web

to be tight: Increase basic allowable 10 percent.

to be loos,enedb service: Use basic allowable.

she= stress iS expressed as T- (section 4.7),

the allowable value is taken”from the curve with the appropriate value
of Uplyf. If the nominal web shear stress is expressed as T’- (sec-

tion 4.7), the alJ&wable value is taken from the top curve labeled

%l?DT
= 450*

.,

Rivets are assumed to be no’t-ofany count~sunk type.
/.

Note 1: The a~owable~’web stresses defined by figure 19 are valid
only if the standard allowable bearing stresses (on sheet or rivets) are
not exceeded.

,-

Note 2: For webs

and with :<100, the

section 3.7.)

unsymmetrically arranged with’respect to flanges

allowable web stress should be reduce”ii.(See

Note 3: At points where local loads are introduced into the web,
the
two

allowable web stress should be reduced. (See section 3.7, last
paragraphs.)

....

—- — . ~-. ___ _..— —..—. .— .
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4.9.Effectiw column length of uprights

The effective column length ~ of an upright is given by the
empirical formula

(35)

h=% “ “ (d>l.5h) J

where

% length of upright, ~asured between centroids of upright-to-flange
rivet patterns

4.10. Allowable stresses for double uprights

.

.
(Webs and uprights made of the s- alumimimalloy; open-section

uprights riveted to web.) . - -.. . ..,

(a) To avoid forced-crippl& failure,-the maxi&m upright stress

Wmax should not exceed

empirical formulas

co =
~2/3

a. = 2&#3

the allowable value U. defined by

(tu/t)?? ksi (24S-T3 ~Oy)

(tuwswi “(75S-T6 _Oy)

the

(36a)

. (36b)

Nomography for these formulas are given in figure 20. If an exceeds the
proportional limit, multiply it by a plasticity correction f~ctor q, which
can be taken as

with the nmduli determined from the compression stress-strain
upright material.

curve of the

(b) To avoid colump failme, the stress ~ should not exceed the
column allowable taken from the standard column curve for solid sections ?

with the slenderness ratio &/P as argument. (The curve for solid sec-
tions is considered adequate because the forced-crippling criterion con-
siders local failure.)

.

.—
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.

h.11. Allowable stresses for single uprights

(Webs and uprights made of the same aluminum alloy; open-section ‘
uprights riveted to web.) .. )

(a) To avoid forced-crippling failure, the maximum upright stress

uu~ should not exceed the allowable value U. definedby the emptiical

formulas
,’..

~o = 26k2/3 (tu/t)l/3 ksi

Co = 32.#13 (tu/t)l/3 ksi

(24S-T3 ~Oy)

(75S-T6 alloy)

(3’ia)

(3P)

I?omographsfor these formulas are given in figure 20. If” a. exceeds I

the proportional limit, apply the plasticity reduction factor as for ‘
double uprights.

(b) To avoid column failure or excessive deformation, the stress au

s,houldnot exceed the column yfeld stress, and the average stress over
the cross section of the upright

%J%e ‘
QJav=— Au

(33)

should not exceed the allowable stress for a column with the slenderness -
ratio lq3/2p. .’..

., \
.
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where

-.

4.12. Web-to-flange rivets

The rivet load per inch

R“

hR depth of beam measured
and bottom flanges

run of beam is given by formula (34)as

- % (1 + 0.414k)
hR

between centroids of rivet patterns, top

4.13. Upright-to-flange rivets

The end rivets must carry the load existing in the upright into the .
flange. If the gusset effect (decrease of upright load towards the end
of the upright) is.neglected, these loads are

+
for double uprights

Pu = %Au

for single uprights

1

(39)

——
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4.14. ~right-to-nb rivets;’”.< - ~
--

For double uprights, the upright~to-~b rivets s;otid.’b#ch&ked for
two possibilities of failtie, one due to shear caused by column ‘bending,
one due to tension in the rivets caused by the tendency of the web folds,
to force the two components of the upright apart. i,“

To avoid shear ~ailure, the total rivet shear stre&th (stngle shear
strength of all.rivets) for an upright of 2@-T3 allo~ should he

.

looqJ
RR = b% kips (40-)

where

Q static moment of cross section of
in the median plane of the web,

one.upright about an axis .
inchess

.
b width of outstanMng leg of upriglrt,inches

%/% ratio from formula (35), section 4.9

For uprights of other materials, it is suggested that the right-
hand side of formula (4-0)be multiplied by the factor: Compressive @ela
stress of material divided by compressive yield stress of 2kS-T3 alloy.

H the actual rivet strength R is less than the reqiired strength,.%,

the allowable stress for column failure (section 4.10, item (b)) &t be
multiplied by the reduction factor given in figure 21.

The strength necessary to--avoidtension failures is given by the
tentative criterion:-

Tensile strength of rivets per inch run > 0.15tamt “ (41)

where atit is the tensile strength and ‘t,the thichess of the web.

For single uprights, the tensile
folds of the web from lifting off the
criterion:

strength necessary to keep the
upright is given by the tentative

Tensile strength of rivets per tich ~> o.~atit (42)
!.... .—
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The tensile strength of a rivet is defined as the tensile load that
causes any failure; if the sheet is thin, failure will consist in the
pullm~the rivet through the sheet. (See section 9.9 for data.)

No criterion for shear strength of the rivets on single uprights
has been established; the criterion for tensile strength is probably
adequate to insure a satisfactory design.

The pitch of the rivets on single uprights shouldbe small enough
to prevent inter-rivet buckling of the web (or the upright, if thinner
than the web) at a compressive stress equal to crUM. The pitch should

also be less than d/4 in order to justify the assumption on edge sup.
port used in the determination of Tcr. The two criteria for pitch sre

probably always fulfilled if the strength criteria are fulfilled and
normal riveting practices are used.

4.15. Effective shear modulus

.
The effective (secant) shear modulus G~ of webs in incomplete

diagonal tension is givehby figure 22(a) for the elastic range. Fig-

/
P

ure 22(b) gives t e plasticity correction factor
/

2&-T3 tioY. ~ -

Ge ~ for webs of

4.16.Secondary‘stressesin flanges

The compressive stress in a flange caused
may be tsken as

The primary maximum bending moment in the flange
theoretically

by the diagonal tension

(over an upright) is

where C3 is taken from figure 18. The secondary maximum moment, luZLF-

way between uprights, is half as large. Because these moments are highly
localized, the block compressive strength is probably acceptable as the
allowable value. The calculated moments are believed to be conservative -
and are often completely ‘neglectedin practice.

.
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.5.Structural Efficiency of Plane-Web Systems

In many problems of aircraft structural design, the over-aU dimen-
sion of the component to be &signed is fixed by aerodynamic or other
considerations,and the load that it must carry is also known. These
given requirements imply inherent limitations on the structural effi-
ciency that may be achieved. Consider, for example, two compression
members required to carry a load of’”lOkips; the first one is specified
to be 1 inch long, the second one 10,feet long. Obviously, the first
one will be merely a“compressionblock, which can be loaded to a very
high stress and is thus very efficient. The second one willbe a fairly
slender colmn, which can carry only a low stress and is thus unavoid-
ably rather inefficient.

As an aid in choosing the most efficient designs possible, Wagner
suggested (reference 24) that the given parameters - load and dhension -
be combined into a structural index having the dimensions of a stress
(or any convenient power or function of a stress). For columns, the

index wouldbe P/L2, and for shear webs, it wo@bl be S/h2, but for
convenience in plotting certain curves, the square root of these expres-
sions is usually preferred; the,structural tidex for shear webs is thus

@/h, where S is conventionally expressed in pounds and h in inches
in order b obtain a convenient range of numbers. A web that is requtred
to be very dee~, but to carry only a small load maybe temned “lightly
loaded”; it has a low index value which connotes unavoidably low effi-
ciency. A shallow web carrying a large load is “highly loaded”; it has
a high structural index and can be desi~ed to be more efficient than
the lightly loaded web. A web 70 fiches deep and carrying a load of
10,000 pounds (side of a flying-boat hull) would have an index value
of 1.4; a web 10 inches deep and carrying a load of 100,000 pounds (web
of a monospar fighter wing) would have an index value of 31.8. These
two examples indica~ roughly the range of the index value for conven-
tional designs.

In order to obtain a general idea of the structural efficiency of
plane webs h incomplete diagonal tension, systematic computations have
been made for the following conditions:

(1) The material is either 2kS-T3 for web and uprights, or
Alclad 75S-T6 for the web and 75s-T6 for the uprights.

(2) me Upright spacing is fixed at either one-fourth of the web
depth or equal to the web depth.

(3) The cross section of the upright is an angle having legs of
equal thickness but unequal width. The leg attached to the web is
assumed to have a width-thickness ratio of 6, the outstanding leg a ‘I
ratio of 12. Single as well as double uprights are investigated.

. .
,. .... .. .....-. ,- -.
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The allowKble values used for web shear stresses are those shown in
figure 19. The allowable upright stresses for forced crip@ing are
taken from figure 20. The curve of allowable column stress is defined
for 2&T3 materi~ by the Euler curve”and a straight line tangent to
it, starttig at 52.5 ksi at zero length. For 75S-T6 uprights, the
Euler fomula is used with the tangent modulus mibstituted for Young’s
mea-us.

With the design conditions thus fixed, web systems have been
designed by a trial-and-errormethod to give simultaneousfa~ure of
the web and the uprights; the result may be termed “balanced designs.”
It has not been proved that a balanced design is necessarily the optimum
(lightest) design, but spot checks on a number of designs have failed
to tisclose any cases where the efficiency could be improved by
unbalance.

The results of the calculations are
diagrams show the structural efficiency,
stress

F. s

shownin figure 23. The upper
expressed as a nominal shear

Au()ht+~

that is to say, as the shear stress that would exist in the fictitious
web obtained by adding the @right material in ‘aunifomnly &Mxributed
manner to the actual web. The upper limit for % is the allowable ,
shear stress for webs with k = O; at this limit, no stiffeners are
required, the flanges alone being sufficient to make the web buckling
stress equal to the stress at w@kh the web fails in the connection to
the flange.

The lower diagrams in figure 23 show th~-“stiffening ratio” AU/dt.
These ~agrams are useful for finding a trial size of upright after the
necess~ web thiclmess has been estimated, as discussed in section 6.
For dcnibleuprights on Alclad 75s-T6 webs, interpolationbetween the

curves for a,–= 1.0 and;=
h

0.25 is not permissible for index values

above about 10; a more complete set of c~es is therefore given in
figure 23(C).

.,

-.
For ~ given web material and index value, the stiffenhg ratio

depends to some extent on the upright tiacing (d/h) and on the type of
upright (dcnibleor single). However, the efficiency of the web system

.

as nieasuredby 7 is practically independent of upright spactig and
upright type.for 2hS-T3 webs. For 75S-T6 webs designed for an”index *

— -- ——. —
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.

value greater’than about 14, double uprights closely spaced

appear to give appreciably better efficiency than the other
E=0”2$
three

arrangements,but the following practical considerations should be
borne in mind.

At low values of diagonal tension (say k < 0.05), the calculat-
ions are very sensitive to changes in the web-buckling stress, the web
allowable stress, and the shape of the upright (ratio b/~). Figure 24
shows the approximate relation between the index value, the thiclmess
ratio h/t, and the factor k, based on the calculations for figure 23.
Inspection of figure 24 shows that, for the web system under considera-

(
tion 75s-T6, double uprights,} )

= 0.25 , the value of k = 0.05 iS

already reached at an index value of about 15. For higher index valuesj
the efficiency that can be counted upon in any given practical case is
therefore somewhat dmibtful; it may be only very little more than the
efficiency of systems with single uprights and.wider upright spacing,
which are much more desirable for production.

Inspection of figure 24 shows that the thickness ratio of the web
(h/t) depends only on the index value, in firsliapproximation. Because
the ratio h/t is more readily visualized than the index value,
approximate (average) values of h/t are shown in figure 23 in addi-
tion to the index values. Inspection of this figure shows that thick
and medium-thick webs occupy the largest part of the figure, while the
thin webs are crowded together on the left side. Wagner recommended
(reference 1) that webs be designed as diagonal-tensionwebs for index
values less than 7 (and as shear-resistantwebs for index values greater
than ll)e Webs that fall under Wagner’s classification of diagonal-
tension webs therefore occupy ohly a nsrrow strip on the left-hand
edges of figure 23.

Each curve in figure 23 has two branches. On the right-hand branch,
the uprights fail by forced crippling; on the left-hand branch, they
fail by colmn bowing. (The sudden change in direction of the curves
at their right-hand ends is caused by the “cut-off rule” regarding the
critical shear stress given in note 2 of section 4.2.) Inspection of
the figure shows that column failure becomes decisive only when the
index value is quite low, about 4 or less, and the h/t ratio is cor-
respondingly large (over 1000). In present-dsy practice, such thin
webs are encountered only infrequently; upright failure by forced
crippling therefore predominates in practice.

As long
efficiencies
more coripact

as failure by forced crippling remains.decisive, the
shown in figure 23 can be improved somewhat by choosing
upright sections (lower b/@) than those chosen for the

—-._._ —- — —.- ———
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calculations. The practical limitation will be the edge distance
required for upright-to-web and upright-to-flange rivets.

the
for

and

Figure 25 shows a comparison of the most efficient web systems for
two materials considered. The curves represent faired envelopes
the rsnge of upright spacing studied.

An often-debated question is the relative efficiency of sheet webs
truss webs. Figure 26 gives a comparison of 24S-T3 alloy sheet webs,

Pratt truss webs} andW~n truss webs, based on a revision of the study
-* h reference 25. The truss-web members were assumedto be squsze

b
tubes with a ratio – = 24 of the walls in order to eliminate local

instability problems: The same allowable stresses (including the
column curve) were used as for the sheet webs. Compression members were
assumed to be pin-jointed for design purposes. For a number of trusses,
sufficiently detailed designs were made to permit an estimate to be
made of the weight added by the gussets and by the end-connection inef-
ficiency of the web menibers. The tension members of the trusses were

“

designed to be capable”of carrying sufficient compression to enable the
truss to csxry a negative load equal to 40 percent of the positive load.
(The sheet webs will carry 100-percent ne~tive loads.)

r

Figure 26 shows &at the Pratt truss is deci&dly less efficient
than a sheet web except over a very narrow range, but the Warren truss “
is somewhat more efficient than the sheet web over a considerable range
of the index value. The following considerations,however, msy influe-
nce the choice between the two @pes of shear webs:

(a) tie me~od of &sig&ng sheet webs has been proved by about
200 tests covertig a large range of proportions. There does not appear
to be a stigle p@lished strength test of a truss of.the type con-
iid.ered. It is quite possible that th~ secondary stiesses existing in
trusses with riveted joints may reduce the actual efficiency below the
theoretical value.

(b) ~ genetii the Wsigner iS required to design a beam rather
than a shear web alone. The allowable flange compressive stresses for
a sheet-web beam are quite high (often above the yield stress), while
the long unsupported chords of the Warren truss would have rather low
allowable stresses. The efficiency of the tension chords is also lower
in the truss because the web shears are introduced in concentrated
form and’thus necessitate large rivet holes through the flanges. Inef-
ficiency of the flange mi@t therefore counterbalanceefficiency of the
web.

(C) ~ the web to tie~siged iS for the spar of a conventional.
wing with ribs, additional menibersmust be added to the Warren truss

.

———
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for attaching the ribs. On a sheet web, the uprights can be used for
this purpose with little, if any, additional material being req-d.
In addition, considerations of rib weight may require changes of the
slopes of the truss diagonals, and the efficiency of the truss is fairly
sensitive to such changes.

(d) W trUSS tis gene- poorer fatigue characteristics than
the sheet web and is more expensive to manufacture.

fact

d/h

(e) The truss gives access to the interior of the structure; this
alone is often sufficient to overbalance all other considerations.

6. Design Procedure

For design, the following procedure is suggested:

With the given parameters S and h, the index ~/h

With the help of the efficiency curves in figure 23, a

is calculated.

value of
is chosen (other design considerations affecting the spacing being

considered, if necessary), and the choice between stigle or double
stiffeners is made.

The appropriate lower diagram in figure 23 is usedto find the
stiffening ratio &/dt.

Figure 24 is used to find h/t &d thus the web thickness t.
(This figure was prepared from the computation data for figure 23.)
Normally, the use -of standard gages “isrequired; the next-higher stand-
ard gage should be chosen, in general. If the ratio h/t cannot be
esthnated with tiicient accuracy from figure 24, use the figure to
obtain an approximate value of k. Next, assume - = kOO and use

figure 19 “to find an apj?roximateVtiue fOr T-. (Correct this, if

necessary, for proper edge condition as specified h section 4.8). The
re&red web thickness is then

,.

The area ~ can now be calculated, the values of d, t, and
AU/dt being known, and an upright having this area is chosm. Again, :
the next-higher standard srea should be chosen unless the web thickness
chosen is appreciably higher than the reqtied thickness (i.e., nesrl.y “
one gage-step higher).

— —— -—-..— ——— .—— —— .—— .—
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As long as forced crippling is the decisive mode of failure of
the upright, the fomnulas indicate no reason for choosing anything more
complicated than an angle section for the upright. However, because
the empirical formulas for forced crippling are not very accurate, it
is quite possible that detailed experiments on a specific design may
show some other cross sections to be somewhat better.

Attention is called to the fact that the allowable web stresses
givenby figure 19 are based on “mininmm guaranteed” material proper-
ties which are considerablybelow the typical properties. The use of
higher properties in design is permitted by the regulating agencies
under some conditions; the allowable web stresses may then be increased
in proportion.

The allowable stresses for uprights given in section 4 are also
conservative; the degree of conservatism is discussed briefly in sec-
tion 3.I..2and in more detail in Part II (reference 2). The uncertain&
is probably caused almost entirelyby the wealmess of the empirical
formulas; wiabili~ of material properties is believed to be a very
minor factor.

.
Consequently, higher allowable stresses can be used for

the uprights if the design is verifiedby a specific static test.

A final word of caution regarding figure 23 may not be amiss.
The curves shown me strictly valid only whep the stipulated allowable
stresses are applicable and when the uprights have the stipulated
cross section. Under other conditions, the curves wi12 be somewhat
tifferent, and the differences may not be small;
charts should not be used as a means of strength

7. l?umeric.alExsmples

consequently, the
analysis.

As numerical examples, a thin-web besm
be analyzed. Both beams were tested in the
failing loads measured in the”tests willbe
loads” P.

and a thick-web beam will
NACA research program; the
used as “design ultimate

.—

Example 1. Thin-web besm.- The thin-web beam chosen as example 1
is beam I-@- hDa of Part II (reference 2) or reference 4. The uprights
consist of two angles 0.750 x 0.625 x 0.125. “Thematerial of web and .
uprights is 2@-T3 aluminm alloy. The web is sandwichedbetween the
flange angles. The flange-flexibility coefficient ti (formula (19a))
is 1.20.

——.
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Basic data: (All linear dimensions are in inches.)

.
he = 41.4 ~ = 38.6 h= = 37.1

d = 20.0 d= = 19.37

t = 0.0390 . ~ = o.125

P= 30.3kips

{

~ = 0.353 in.2
Upright section

p = 0.351

From these data:

Au— =0.454
dt

het = 1.61 in.2

Buckling stress:

“% ‘ %
With ~ = 3.20 and ~ large, figure 12(b) gives

Rh =Rd= 1.62

hc
From figure 12(a), with — = 1.91

4

kSs = 5.92

By formula (3P)

k)
z

‘cr,elastic = 5.92 X10.6X103X ‘j”~~ xl.62=o.416ksi
.

Figure 12(c) shows that T Tcr for this stress; therefore,
cr,elastic =

.T
cr = o.416ksi

Web stress:

T . -& ...~l = 18.8 ksi

Loading ratio:

~=%!i=lp”p
..

.- _.— —_________ .— ————- ———.-—
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Diagonal-tension factor:

From fi~ 13

. .
, ,. k= 0.680

Upright stress:

From figure 14

au
— = 0.90; au

T
= 0.90(18.8) = 16.9 ksi<

Allowable upright stress for column failure:

The effective column length is, by fonm-da (35), .

Le =
38.6

= 28.0 .

tl.o +0.6802(3 - 2x 0.519)

Le 28.0—= — =
0.351

79.8
P

This’is in the long-column range. Therefore ua =
x%

= 16.5 ksi.
.

(Le/p)2
This value would be the allowable stress for a solid-section column.
The
the

The

upright consists of two angles riveted together. By formula (40),
required rivet strength was computed as:

RR = 8.56 kips

actual rivet strength w-as

With the ratio

tor 0.94. The

Since the besm

R = 4.65 kips

4.65
– 0.545, figure 21 gives a reduction fac-g=w6-

allowable upright stress is therefore

‘all =
16.5x 0.94= 15.5 ksi

failed when the computed upright stress was 16.9 ksi

.

(see heading “Upright Stress”), th~ allow~bl~ stress of 15.5 ksi was
about 8 percent conservative.
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AQowable upright stress for forced crippling:

With ~ =
%’

0.519 and k = 0.680, figure 15 gives

= 1.14x 16.9 = 19.2 ksi

From figure 20

!Ju~
— = 1.14
au

U. = 24.o ksi ‘

The allowable stress is 25 percent greater than the existing stress.

Allowable web stress: ,
au

According to figure 16(a),.with ~ = 0.90 and k.. ’680,O,

tan a“= 0.81

Accor&Lng to figure 17,

cl = 0.022

According to figure 18, with md = 1.20,

C2 = 0.01

Therefore

Tf ..(1 +k%,)(l + kc2) s 18.8x I.olx 1.01 = 19.2 ksi

The allowable web stress according to figure 19(a) is 22.0 ksi which “
is 15 percent greater than the existing stress.

...

Note: G s30300The index value of the beam is —h = ~ = 4.26..
Interpolation on figure 23(a) shows that a besm with this index value
wou,ldbe a balanced design if it had a ??atio Au/dt equal h 0.k.6
and that the uprights would fail by forced crippling.

The actual ratio
?

/dt is 0.454 and is thus very “closeto the
value given by figure 23 a). However, the calculations for this figure
are based on upright sections having b/

k
ratios of 6 and u for the

attached smd the outstanding legs, respec ively. The actual sections

_.. —
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have ratios of 5 and 6, respectively; they are thus stockier than those
assumed for figure 23(a). As a result, the detailed analysis shows
that the uprights have excess margin against failure by forced crippling
but are somewhat weak in column action. The detailed analysis thus shows
that the design is slightly unbalanced and that beam failure shouldbe
caused by colwnn failure of the uprights; this prediction agrees with
the test result.

Example 2. Thick-web beam.-~l?hethick-web beam chosen ak exsm-
ple 2 is beam V-E2-10S of Part II. The uprights are single angles
0,625 x 0.625 x 0.K283. The material is 2@-T3 aluminum alloy. The
web is bolted (using washers) to.the outside of the flange angles.

As in example 1; the test failing load will be used as “design
ultimate load.” Two sets of allowable stresses,tiil.1be given for
forced-crippl~g failure of the uprights and for web failure. The
first set represents the values recommended for design use, obtained
from the graphs or-formulas quoted. The’second set,.given in p~en-
theses following the first set, represents the %est possible estimate.” . .’
The differences are as follows:

(a) The %estpossible esti&te” for the crippling-allowableis
based on the middle of the scatter band, while the “recommended for
design” value represents the lower edge of the scatter band. The “best

possible estimate” for crippling allowable is therefore
4

& .1.25

times the value gi~enbyfomula (37).
/’

(b) The “best possible est~te” for the web strength is obtained
by multiplying the design allowable (fig. 19) by the factor: Actual
tensile ’,strengthover specification strength (or 69.3/62) andby the
factor 1.10 to obtain the average rather than the lower edge of the
scatter band for the tests on shear webs. (See section 3.7.)

Basic data: . (

~ = 11.58 in. - ~ = 9.875 in. hc = 9.875 in.

d=7.00 (=U) in. t=o.lo43 in. P = 0.182 in.

~ = 0.1443 ill.p ~ = 0.1283 in. e s 0.251h.

ma= 1.37” ~ = o.3125 in. ~ = 2.32 in.2

—— —

- P = 34.5kips
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Effective upright area:

Au = 0.1443
2
= 0.0497

e

()
l+%

Buckling stress:

%
—= 3.00
t

hc
— = 1.50
d

..

Rh = 0.93

%le

E’
0.0681

Rd = 1.62

61

2

( )[

3

‘cr,elastic = 6.70 x 10.6 x 103 0“1~43
()]

0.93 +; (1.62 - 0.93) $

= 16.55ksi

According to figure 1.2(c):

= 16010ksi
‘cr

Stress analvsis:

34.3
T = 11.58 XO.1O43

‘= 28.56 ksi

T
— = 1.77
T
cr

k: 0.123 (from fig. 13 or formula (27a))

au
— = 0.2!27

T

%~
— = 1.30
au

au = 6.48 ksi

=“8.34 ksi

— —.—.- —_ —— -—-..
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Column fail.ureof uprights:

A 5 X ~ angle with an effective length less thsn 9.9 inches is evi-
~8

~nt~ in no danger Of column failure at a stress Of 6“48 ksi= .

Forced-crippling failure:

%— = 1.23
t

CT.= 7.0 (8.75) ksi

Comparison of the two values of U. with WH shows that the

“design allowable” vslue (7.0 ksi) would have predicted upright failure
at a load about 16 percent lower than the test failing load, while the
%est possible estimate” of 8.75 ksi would have predicted upright
failure at a.load 4.5 percent higher than the test load. In the test,
the web ruptured, but these figures indicate that upright failure
might have contributed to the web failure or else would have been the
primary cause of failure if the web had beep slightly stronger.

Web failure: . .
. . .. .

---

1

From figure 16(b): ~ s 29°
,’

From figure’+9(a): Ta= = 25 (30.75) ksi
.-. .-

!lTpe.actual web stress at failurq (web rupture) was computed to
be 28.56lid:.-.(’i’hecorrection for effeet of flange flegibility is
negligiblei) “~.The ‘design allowable” value of 25 ksi therefore would
have pre~-~ the failure too lQW.(conservatively)by about 12 percent.
we ‘%est.~bss~ble estimate” of 30.75 ksi wotid have predicted the
f&lure ~~t 81percent too high.. If the correction for actual material .

, . pr@efiies had been made, but not the.correctio”hfor scatter in shear-
web tests, the prediction would have %een ‘vekyclose.

,’

Ndte: According to the “best possible esthates, n failure of the
~rights should have precipitated failure of the beam at a load less
than 4 percent lower than that causing web failure. In the test report,
failure was attributed to web failure. It appesrs, therefore,.that the .

design was very closely balanced. . ‘ .’

.

—

————
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tij” /.
The index value for this beam is -T% = 16.0. Accordi+ to

figure 23(a), this index value would require a ratio AU[dt of ~
about 0.26, while the actual ratio was only 0.198. Thi.~*-efficiency
of the test beam is attributable to the use of an upright section having “’
a b/~ ratio of 5, which is considerablymore-compact tlum.lhe s~ction
assumed for the calculations leading to figure 23(a). ,.

CURVED-WEB SYSTEMS

The analysis of diagonal tension in curved-web systems utilizes
the methods developed for plane-web systems. The discussion is there-
fore kept brief except for new problems introducedby the curvature.
The circular cylinder under torque loading is the simplest case and is
used as the basis of discussion.

8. Theory of Pure Diagonal Teqsion

If a fuselage were built as a polygonal cylinder and subjected to
torque loads (fig. 27(a)), the theory of diagonal tension would evi-
dentlybe applicable and require only minor modifications. If the fuse-
lage were built with a circular-section skin, but polygonal rings
(fig. 27(b)),.the sheet would begin to “flatten” after buckling and
would approach the shape of the polygonal cylinder more and more as
the load increases. In the limit, the theory of pure diagonal tension
would be applicable, but ih the intermediate stages, the theory devel-
oped for plane webs evfdentl.ywould not be directly applicable. In an
actual fuselage, the rings are circular, not polygonal (fig. 27(c));
consequently, all the tension diagonals of one sheet bay cannot lie in
one plane, even when the diagonal tension is fully developed; an addi-
tional complication therefore exists.

In order to derive a theory of pure diagonal tension in circular
cylinders with a minimum of complications, it is necessary to consider
special cases. Wagner has given fundamental relations (reference ~)
for two cases: cylinders with panels long in the axial direction

(d >2h, see fig. 27(d)) between close~ spaced stiffeners
k<+R)’”

and cylinders with panels long in t~. circumferential direction ‘‘
. . .

(h > 2d, fig. 27(e)) belxfeenclosely spaced rings (d<~~)-. ln&e
first case, the majority of the tension diagonals lie in the surface
planes of the “polygonalizedi’cylinder; in the second case, the
majority of the tension diagonals lie on a hyperboloid of revolution.

.—.— ——.— .—
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In the develo~nt of the theory of pure diagonal tension for
plane webs, it was pointed out that all the stresses are known as soon
as the angle a of the folds is known. The fundamental formula for
finding this angle is formula (14), which may be transformed by dividing
numerator and denominator by Young’s modulus into

This fommla can
by an originally
considerations.

E - .5X
tm% = ~ -~ (43)

Y

also be applied to the diagonal-tension field fomned
curved panel on the basis of the following

Imagine a
along one long
flattened out,
by a distance
and the len@h

panel long in the axial direction (fig. 27(d)) to be cut
edge and both curved edges. If the panel were now
the cut long edge would be separated from the stringer
A equal to the difference between the length of the arc I

J

of the chord, which is approximately

(The restriction to closely spaced stiffeners, h <~ R, is made in

)
order to permit the use of this fommla. The same configurationwould
have been obtained if the panel had been made flat originally and then
compressed by the amount A. The change from a circular section to a
polygonal section that takes place while the diagonal tension develops
is therefore equivalent to a compressive strain A/h in the rings, and
formula (43) may be used to compute the angle a for a curved panel by
writing

The formula thus becomes

G- ‘STtan2a=

()
2

6 - 6RG +&;

(44)

.—— ——.—.—
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For the panel
& more involved,
(reference 5)

.

‘ ,’ 65

long in the circumferential direction, the relations
but the final result again.takes a simple form

, .

(45)-

If the restrictions as to the ratio d/h are disregarded, and
both fomnulas are applied to a cylinder with square panels (d = h), it
will be seen that the “flattening-out”temns become equal and the
formulas give identical results if

or

a= 30°
.

which is a fair~ representativeangle for curved webs. It maybe
assumed, then, in view of the empirical factors contatied in the theory
of incomplete diagonal tension, that for practical purposes formula (~)

maybeusedif ~ >1.0 and formula (45), if ;< 1.0. The tests cPn3il-

able so far tend to confirm the assumption that no limitations need be
placed
become

of the

small;
in the

on the aspect ratio d/h of the panels. Until further data
available, however, it would be well to limit the subtended arc

panel to a right angle
F=: R)wesstherti’sp%c@’ isve~ ‘;

it should also be noted that the investigations of the panel long
circumferential direction made to date are very sketchy.

When the strains on the right-hand side of formula (~) are
expressed in terms of the applied she= stress by
formulas

_ Tth cot a
‘ST =

‘ST

the formula becomes
in the form

-Ttd tan a
; aRG ‘

%G

a transcendental equation for

(1+%)tan4a+A tm3a = 1 + RS

. .

—.—. — .——. -—z —---

using the basic

Y

a
; u=

sin 2cr,

a and maybe written

(d>h) “ (44a)

— —. —.- _ —.–. . —
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,.

where

2
..

lhE

()‘=3: F
d-t

;
‘s=’% ; ‘R=— ‘RC

Shnilsrly,fomml.a (45)becomes

“ ‘&5”+(1+4ti4a=1+Rs (h> d) (45a)

where

Graphs based on these fomnulas are shown h figure 28.

The effective shear modulus
is obtained by the basic fozmila
tion for curved-web systems

— = = tan2a‘: %G

of a cylinder in pure diagonal tension
(23a), mo~ied only to suit the nota-

.

+ ht 4

G
cot2a + — (46)

sin22a

It will be noted that the fomnulas given contain the actual areas
of the stringers and rings. In practice, these stringers and rings are
probably always single; in the case of plane webs, single uprights enter
into all equations with an effective area given by formula (22), but the
following considerations indicate that the actual areas should be used,
in general, for the analysis of cylin@s.

Consider a cylinder of closed circulsx cross section (fig. 27(c))
with closely spaced rings under the action of torques applied at the
two ends; the rings as well as the stringers are assumed to be riveted
to the skin. The rtigs in such a structure are evidently in simple
hoop compression that balances the circumferential component of the
diagonal tension; the eccentricity of the rings does not sffect the
hoop compression, the load actually being applied to the ring in the
form of a uniformly distributed radial pressure. Consequently, the
actual area of the rings should be used in the calculations.

The stringers are loaded eccentricallyby the skin, but they can-
not bow from end to end; they are constrained by the rings to remain in
a stmi@t line, except for secondary bowing between the rings and local
disturbances in the vicinity of stations where the magnitude of the

.

—

-..

—.
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shear load changes. In the main, then,
they”are under central axial loads, and
correspondinglybe used.

67

the stringers act as though
their actual areas should

When the rings are “floating” (fig. 29(a)), the radial pressm
exerted by the skin tension is transmitted to the rtigs in the form of
forces Pr concentrated at the stringers. The circular beam under
hoop compression and isolated radial forces shown in figure 29(a) are
statically equivalent to the straight beam shown in figure 29(b), a
continuous beam under uniform load. The maximum bendtng moment in the
ring (under the stringer) is therefore

By statics, with sufficient

Pr =

~G’&.h

accuracy if $<1,

h
–=tid tana+

‘RG R

therefore

(47)

For the remainder of this section, the discussion is confined to
cylinders with panels long in the axial.direction (d >h).

Because of the polygonal shape acquired by the cross section of the
cylinder as the diagonal tension develops, each tension diagonal experi-
ences a change in direction as it crosses a stringer. Consequently,
each tension diagonal exerts an inward (radial) pressure on the
stringer. The magnitude of this pressure per running inch of the
stringer is

If this pressure were
stringer, the primary
junction with a ring)

p=@# tan a

distributed uniformly along the length of the
peak bending moment in the stringer (at the
would be given by the formula

(4a)

(49)

--—.—.— .—. ——..___— _
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A secon@ peak moment would exist half-way
tude would %e one-half of the primary peak.

between rings; its magni-

.

.

For several reasons, the radial pressure p is not uniform. The
first and most tiportant reason is as follows. The derivation ‘of
formula (k8) for p assumes that every tension diagonal experiences
the same change in direction as it crosses the stringer; this is the
condition that would exist if the “rings” of the cylinder were built as
polygons. Since the rings are ac- circular (or curved), a portion ,
of the tension diagonals near eac~ end of a panel will be forced to
remain more or less in the origindl cylindrical surface and will thus
experience little change in direction. The radial pressure is therefore
less near the ends than given by the simple formula; as a result, the
primary peak bending moment uiaybe much less, and the secondaw peak
somewhat less than indicated by the formulas based on a uniform dis-
tribution of the pressure. Other reasons for nonuniform distribution
of the pressure are sagging of the stringers, possibly sagging of the
rings, smd nonuniformity of skin stress.

,.

The effects of nonuniform distribution of the radial pressure could
perhaps be estimated under the condition of pure diagonal tension con-
sidered here, but the calculationswould be tedious and Would probably
require additional approximations. Under the practical condition of
incomplete tiagonal tension, additional large difficultieswould arise.
In any event, elaboration of the procedures for computing bending
moments is not likely to be worthwhile in view of the empirical nature
of the theory of incomplete diagonal tension.

9. Engineering Theory of Incomplete Diagonal Tension

9.1. Calculation of web buckling stress.- Theoretical coefficients
for computing the buckling stress Tcr in the elastic range, based on
the assumption of simply supported edges (reference 26) are given.in
figure 30. Over the limited range of available tests, these theoretical
formulas have given better results than any empirical formulas for
buckling of curved sheet, particularly when the appearance of stringer
(compressive) stresses was used as the criterion for sheet buckling.
It shouldbe noted, however, that in the limiting case of flat sheet
it has been found necessary to modify the theoretical coefficients by
means of empirical restraint coefficients (section 4.2). Logically,
analogous modifications should also be made for slightly curved sheet
(small values of Z in fig. 30), but no recommendations can be made at
p~esent concerning a suitable procedure.

9.2. Basic stress theory.- As pointed out in section 8, the
geometric change of shape from a circulsr to a polygonal cylinder
with d >h is equivalent to producing a compressive strain in the

—
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rings, and a similar consideration applies when h > d. The development
bf the diagonal tension therefore proceeds more rapidly in a curved web
than in a plane web, and the empirical relation between the diagonal-
tension factor k and the loading ratio /T Tcr mUSt be generalized. .

Analysis of test data has shown (reference 27) that they canbe fitted
fairly well by the generalized formula

k=

,[ )1
tanh o.5+300g —10gloT:r

● (w)

with the auxiliary rules:

(a) If h > d, replace d/h by h/d.

(b) If d/h (or h/d) .islarger than 2, use 2.

Figure 13 shows equation (50) in graphical form.

With the same assumptions as
stresses and strains in stringers

k-rcota ‘
‘ST = -A=

~ + 0.5(1 - k)

‘RG =
kT tan a

-ARG
~ + 0.5(1 - k)

in plane diagonal tension, the
and rings are given by the formulas

;

;

‘ST
‘ST ‘= (51)

_!ly
‘RG

(52)

For floating rings, the factor 0.5(1 - k) representing effective skin
in formula (52) is omitted.

The web strain 6 is obtainedby formula (30d). A graph for
evaluating this strain in the usual range of design proportions is

‘ given in figure 31. In curved diagonal-tensionfields, the longitudinal
and the transverse stiffening ratio are in most cases of the same order
of magnitude. The stringer stress and the ring stress thus depend on
three parameters, the two stiffening ratios and the radius of curvature.
With this number of parameters, it is impracticable to prepare an
analysis chart for curved diagonal-tension fields corresponding to
figure 14; the analysis must therefore be made by solving the equations
in the manner described in section 3.2 for the general case of plane

- —-——. .——-—— ———
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diagonal tension. A first estimate of a is made; equations (51),
(52), and (30d) are solved; the resulting values of c, eST, and CRG

are substituted into formula (~) (or (45)) to obtain an improved value
of a, and so forth.

As a first approximation to the angle a, the value - for pure

diagonal tension given by figure 28 maybe used. A better first approxi-
mation to a is obtained if the angle m taken from figure 28 is

multiplied by the ratio a/@ given by figure 32. This curve repre-

sents the average of the scatter band obtained by plotting the ratios
a/~ for a number of webs with proportions varied within the usual

\ EJJA

design range. In
will be within 2°
mation. Analysts
of figures 28 and

The stresses

general, the value of a obtained in this manner
to 3° of the final value found by successive approxi-
with some experience generally di~ense with the use
32 and simply assume an initial value of the angle a.

given by formulas (51) and (52) are average stresses
that correspond to the value cru given by fomula (30a). The maiimum
stresses are obtained, as for plane webs, by multiplication with the

-/u @ven by fi~e 15.ratio u It is possible that these ratios

may require modification for strongly curved panels. As mentioned in
the discussion of plsme webs, direct experimental verification of the
ratio is extremely difficult because of the difficulty of separating
the compression stress from the stress due to bending and the stress
due to forced local deformation.

The effective shesr modulus of curved webs in @complete diagonal
tension is computed by formulas (31a) and (31b), with ~G mibstituted

for Aue and ~T substituted for ~F . In order to be consistent

with the assumption that the “polygonization”takes place immediately
after buckling in cylinders with d > h, the polygon section should be
used in the calculations. Thus, for a circular cylinder with equally
spaced stringers, the
should be computed by

shear flow due to torque and the torsion const@
the formulas

‘=”*

—
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where T is the angle subtended by two stringers. The reduction fac-
tors in the brgckets sre approximate but sre sufficiently accurate for

vshes of q up to about ~ radian (12 or more stringers, uniformly

spaced). It maybe noted that the percentage correction for J is
roughly twice as large as for q.

9.3. Accuracy of basic stress theo~ .- Because the development of
diagonal tension in curved webs depends on more parameters than in plane
webs, and because the test specimens are more expensive to construct and
test, it has not been feasible to check the behavior of curved webs
experimentally as thoroughly as for plane webs. An effort has been ~
made to check a sufficient number of extreme cases to insure reasonable
reliability over the usual range of designs, but very few checks have
been made to date with h> d. The reliability of the basic stress
theory appears to be about the same as for plane-web systems except for
the effective shear modulus, which is somewhat overestimated for curved
webs. .

9.4. Seconda& stresses.- The primary maximum ben@g m&nent in
a floattig ring can be calculated by Using expression (47), which is
valid for pure diagonal tension, and multiplying it by the diagonal-
tension factor k. The secondary msximum, which is equal to one-half
of the primsry maximum and occurs half-way between stringers, has %een
checked experimentally in one case and agreed very closely with the
computed value.

The maximum bending moment in a stringer calls=uly be calcu-
latedly using expression (~) and multiplying it by the factor k.
However, as pointed out in the discussion of expression (49), this
formula cannotbe regsrded as reliable. There have been very few
attempts to check these moments by strain measurements. Such a check
is extremely &lfficult because the effective width of skin working with
the stringer is not known with sufficient accuracy, and consequently it .
is difficult to separate bending from compressive stresses. Even more
tificult is the problem of allowing for the local bending stresses due
to forced deformation of the stringer cross sections. Taken at face
value, the few data available indicate that the secondary peak moment
(half-way between rings) may agree roughly wtth the calculated value
(one-half of tie primary peak). The primary peak at the rings, however,
appesrs to be even less than the calculated secondary peak. The
analysis of available strength tests on cylinders has also led to the
conclusion that the maximum moment appears to be no larger than the
calculated secondary peak. It is suggested, therefore, that the bending
moment in the strfnger at the ring as well as the moment at the half-way
station be computed by formula (49), with the factor k added and the
factor ll?replaced by 24.

. ..- —.. ——— .—— - --——— —
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9.5. Failure of the web.- The nominal shear stress T at which
a curved web (or skin of a cylinder) ruptures would be given directly
by the curves of figure 19 if the diagonal tension were uniformly ~s-
tributed. For plane webs, nonuniformity of stress distribution is
allowed for by the stress-concentrationfactor C2 (fomnula (33b))
which is calculated by Wagner’s theory of flange-flexibilityeffects.
For curved-web systems, no corresponding theoryhas been developed;
the factor C2 is thus necessarily taken to be zero. In order to
compensate for the error introduced by this asswnption, the allowable
stress taken from figure 19 is multiplied by an empirical reduction
factor which depends on the ’propertiesof the stringers and rings.
From analogy witi the plane-web case, it would seem that the reduction
factor should depend primarily on the bending stiffnesses of stringers
and rings. However, for the tests available to date, much better cor-
relation was achieved by using the stiffening ratios involving the
areas as parameters.

The allowable ultimate value for the sheer stress T in a curved
web is thus given by the empirical expression (reference 27)

T*

‘all ‘ al l (0.65+A) -

where

*RG ‘STA= 0.3 tanh K+0.1tanh ~

(53)

(54)

me value T*w is given ~y figure 19; the quanti~ A may be read

from figure 33. It maybe noted that T
*

can exceed 7 because
all all’

the quantity A can exceed the value 0.35 if the stringers and rings
are heavy. The explanation lies in the fact that a grid-system of
stringers and rings can absorb some shesr; the effect is analogous to
the portal-frame effect in planeweb systems.

In section 4.8, it is stated that the basic allowable values of
shear stress for plane webs may be increased lb percent if the web is
attached by rivets assumed to remain tight in service. All the curved
webs tested also developed this higher strength, but the number of
tests is small.

It should be noted that section 4 also states that the rivets are
assumed to be not of any countersunk (flush) type because no appli-
cable tests are available; this stitement holds for curved webs as well
as for plane webs..

.

.
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9.6. General instability.-
lapse of the cylinder by general
developed by Dunn (reference 28)

73

As a check against the danger of col-
instability, the empirical criterion
is available. This criterion gives

the shear stress Ttist at which instabili~ failure will occur and

is shown graphically in figure 34. The full lines indicate the region
covered by the test points, which lie close to the lines with very few
exceptions. No explanation was found for the sudden shift from one
line to the other. The radii of gyration PST and ~G shouldbe

computed on the assumptions that the full width of sheet acts with the
stringer or ring, respectively, and that the sheet is flat, because
the empirical criterion was obtained under these ass&ptions. Graphs
for evaluating radii of gyration for stringer-sheet combinations sre
generally given in stress manuals and are therefore not given here.

9.7. Strength of stringers.- Geometrically, the stringers of a
cylinder correspond to the flanges of a plane-web beam, and the rings
correspond to the uprights of the beam. Functionally, however, the
stringers as well as the rings of a cylinder under torque load act
essentially like the uprights of a beam; the strength analysis of
stringers therefore involves the same considerations as the design of
uprights.

In the discussions on plane-web beams, it was shown that uprights
csn fail either by forced crippling or by column action, and that
forced crippling dominates over most of the practical range of design
proportions. The problem of column failure was therefore treated
rather briefly, and the problem of interaction between column failure
and forced crippling was only mentioned.

In curved-web systems with many rather light stringers, the
problem is unfortunately not so simple. The investigationsmade to
date are hardly more than exploratory, but they indicate that column
action may be relatively more important than in plane webs for the
following reasons:

(a) The angle of diagonal tension is lower in curved webs than
in plane webs (20° “to.30°against ~“, roughly); the stringers there-
fore receive a relatively higher load than the uprights.

(b) The bracing action which a plane web exerts against column
buckling is absent in curved webs. In fact, the radial component of
the diagonal tension applies a transverse load to the stringer, which
acts therefore as a beam-column rather than as a column.

The importance of column action of the strin~rs aristig from
these causes is increased greatlyby the necessity of designing
cylinders such as fuselages to carry bending moments as well as torque
loads.

— ..—— —+ -—.— —— ———.—-.
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In view of the great @ortance of column action in stringers,
it would be highly desirable to have rather complete and reliable
methods of predicting this type of failure. Most of the customary
methods are adaptations of those developed for “free” colmns not
attiched b webs. These methods are highly unreliable because

(a) the twisting mode of fail~ is ~eatl.y altered by attachment
to a web, and .

(b) the skin usually buckles well before ultimate failure M,es
place. The forced local buckling of the stringer section inducedby
the skin buckles materialityreduces the resistance against column
buckling or twisting unless the stringer is unusually sturdy, that is
to say, unusually resistant to forced buckling.

The problems involved are very complex, and very little useful
information is available even for the much simpler problem of the
stiffened cylinder in compression. A purely empirical solution is
hsmlly feasible in view of the many parameters involved. Substantial
progress in the analysis methods for torsion cylinders can therefore
be expected only when an adequate theory of the compression cylinder
has been developed.

For the time being, the following checks are suggested in addi-
tion to the check against general instability discussed in section 9.6.

(1) The strength against forced crippling should be checked in
the same manner as for uprights on plane webs.

(2) A check should be made against colmn failure. For Euler
buckling normal to the skin, fixed-end conditions can probably be
assumed to exist at the rings. The column curve established in the

(usual manner using the local crippling stress for the stringer section

Las allowable for — = O) probably requires some reduction to allow for
o

the effect of skin buckles unless the ratio
P‘ST is larger than 3.

Consideration shouldbe given to the possibility of twisting failure
if the column curve is obtained by computation. Some allowance should
be made for beam-column effect.

(3) The maximum compressive stress in the stringer should be
computed as the sum of the stress UST (computed in accordance with

section 10.4) and the stress causedby the bending moment MST
(section 10.5). .

9.8. Strength of rings.- Floattig rings should be designed to
carry the combined effect of the hoop compression uRG (section 10.4)
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and of the bending due to the moment MRG (section I-o.6)at the

juncture with the stiffener. A check at the station midway between
stiffeners (where the moment is only H as large, but of opposite
sign) may be necessary if the cross section of the ring is quch that
the allowable stresses in the outer and the imher fibers differ
greatly.

Rings riveted to the skin shouldbe checked against forced
crippling in the same manner as the stringers. No recommendations can
be made at present concerning checks against instability failures
other than that given in section 9.6 for general instability. For the
tests available, the two checks (for forced crippling and general
instability) used in conjunction gave adequate strength predictions,
but the nmnber of tests is very small because the rings were usually
overdesigned in order to force stringer or web failure.

Unless the stringers are made intercostal (which leads to loss of
efficiency in bending strength of the cyliriderand is therefore.seldom
done) the rings must be notched to permit the stringers %0 pass through.
At the notch, the ring stress is increased because the cross section is
reduced; this effect is aggravated by the suddenness of the reduction,
that is to say, a stress-concentrationeffect exists. The free edge of
the notch should therefore be checked against local crippling failure.
In the tests of reference 29, all specimens (representingfuselage side
walls) failed in this manner. If the stringer is connectedto the ring
by a clip-angle of sufficient length riveted to the web of the ring,
the net section at the notch is increased, and the edge of the notch
can readily be stiffened so much that there is no danger of this type
of failure. No specific recommendations on this problem can be made
at present because no adequate tests me available.

9.9. Web attachments.-For the edge of a panel riveted to a
stringer, the required rivet shear strength per inch run is taken as

R.=q~+k(_&-~ (55)

This fomula ik obtained from formula (10) with the assmption used to
obtain formula (34). For an edge riveted to a ring, cos a is replaced
by sin a.

If the sheet is continuous across a stiffening member, but the
shear flow chamges at the member, the r vets evidently need be designed

(only to csrry the difference Rl” - R2°) between the adjacent panels.
In such cases, neither the factor k nor the angle a for the lower-
stressed panel is lfiely to be needed for other purposes. In order to
eliminate the necessity of calculating these values for the purpose of

.
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siirplifiedcriteria may be used and should be adequate
purposes.

Rivets should fulfill the criterion for tensile stren@h given by
expression (42). Curved surfaces are encountered mostly on the outer ~
surface of the airframe, where flush rivets are often required for aero-
dynamic reasons. Flush rivets usually develop a low tensile strength
because they pull through the sheet; the ~eck for tensile strength is
therefore important.

Data for the tensile strength of protruding-head rivets taken from
reference 30 me given h figure 35. Data for some types of fluqh
rivets, taken from reference 31, are given in figure 36. These data
are for so-called NACA rivets, in w~ch the countersunk head is formed
from the,rivet shank in the driving operation and then milled off
flush. For “conventional”rivets with preformed countersunk heads, the
tensile strengths were found to be from 10 to 20 percent lower for some
test series (reference 31). Additional dhta on flush rivets may be
found in references 31 and 32. ,-

9.10. Repeated buckling.- It has been found experimentally that
a load h excess of the buckling load will cause a lowering of the
buckling stress for the next application of the load. Thus, in a
series.of tests on curved panels((reference 33), the buckling stress
was l&ered as much as 30 percent after 10 loads, and as much as ~ per-
cent after 60 load applications. ,!l?hemaxim unappliedshear stress was
of.the order of 50 percent in excess of the buckling stress; in the
worst case, it was near the probable proportional limit, but in the
great majority of cases it was well below ’thisMmit. The reason for
the lowerhg of the buckling stress therefore presmaldy must be sought
in lsrge but highly localized sheet bending stresses associated with
the buckle formation (“plastic hinges”).

In static tests made in the aircraft industry, standard practice
appears to be to apply the test load in s~ps; after each step, the
load is removed h order to check for pemnanent set. Thus, any shear

‘ web will have been buckled a nmiber of times before the ultimate load
is reached. The calculations, on the other hand, use formulas for
buckling stresses that can be considered as valid oiilyfor the case
where the test load is increased continuously until failure occurs.
In the test, then, the diagonal tension will be more fully developed
than predicted, and consequently,failure will take place at a lower
load thsm predicted.

The magnitude of the error in the predicted strength depends on
the degree to which the diagonal tension is developed at failure, that
is to say, on the magnitude of the diagonal-tensionfactor k, on the
type of failure, and on the history of the loadings.

———.
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The prediction of sheet failure in curved-web systems is not -
sensitive to moderate errors in k, although somewhat more sensitive
than for plane webs, as inspection of figure 19 indicates. The predic-
tion of stringer or ring failure by forced crippling is not sensitive
because an overestimate of k leading to an overestimate of the
stresses developed also leads to an overestimate of the allowable
stresses. (For balanced desi~s, a given small percentage error in k
results in about one-third as much error in the predicted load.) The
prediction of a column failure in a stringer, however, is presumably
much more sensitive because the allowable stress in this case is
presumably independent of k.

The angle of twist of a cylinder is extremely sensitive to small
errors in k, or /T Tcr, in the vicinity of the buckling tOrqUe. An

addltloh of 20 percent to the buckling torque may double or triple
the angle of twist. Since previous bucklhg or other factors can
easily cause a ~0-percent error in the estimated buckling torque, it
is evident that the calculated angle of twist can be in error by
100 to 200 percent in the region from, say, 0.8Tcr to 1.5Tcr.

At the present, there are no methods available for estimattig any
of the effects of repeated buckling quantitatively.

.

.-
. . . .“
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10. Formulas and Graphs for Strength Analysis

of Curved-Web Systems

No attempt should be made to use the following formulas until sec-
tions 8 and 9 have been carefully read.

10.1. Critical shear stress

The critical shear stress Tm is obtained with the aid of fig-

ure 30 and figure 12(c). Note that d is the distance between rings
riveted to the skin (not floati.ng). Use judgment in reducing -rCr if

Z <10 and tST/t (or tRGlt) <1.3.‘..
r

10.2. Nominal shear stress

When d > h, the nominal shear stress T for post-buckling condi-
tions is calculated as though the sheet were uribuckledand flat between
stringers.

. 10.3. Diagonal-tension factor

The Magonal-tension factor k is obtained from figure 13, or by
formula (50). The spacing d is measured between rings riveted to the
skin. .

When h >d, the nominal shear stress maybe calculated (in
general).as though the sheet were unbuckled.

—

.,
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.

.

(For
ring

(Use

10.4. Stresses, strains, and angle of diagonal tension

By formulas (51), (52), (30d), (M)> md (45)> resPective~)

qG. _

floathg rings,

kT.cOt a

k
ht

+ 0.5(1 - k)

;

kTtancL cr~

*RG
; CE. T

~+ 0.5(1 - k)

omit 0.5(1 - k) in the last expression; use actual.
spacing for d.)

r2kc=~—
Esin2a

fig. 31 to evaluate ~.)

.
+ sin a(l - k)(l + p)l

-1

C-E
ST

tsm% = (d > h)

c- CRG +
-()

llJ2
24 R

The equations are solved simultaqeousl.yby successive

The suggested
as well as halfway

10.5. Bending moments h stringers

approximation.

design value for the moment in a stringer at the rings
between rings is

——.—. — . ..— ——— - __ .—.
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10.6.Bend@g moment in floating ring

The prinmry maximum moment in a floating ring (at the junction with
a stringer) is

The secondary maxtium half-way between stringers is half as large.

10.7.Strength of web

Obtain: am from figure 28 (or by formla

T*~ from figure 19

A from figure 33

(44a)or (45a))

Then, by f~’tia (53),

Ta~ = T*~ (0.65 + A)

The value Tau may be increased 10 percent for rivets that remain tight

in service. It is not applicable without special verification if rivets
are of any flush type.

10.8. Strength check, stringers and rings

Check for general instability (fig. 34).

Check stringers against column failure. See section 9.7 for
suggestions.

Check against forced ”cripplingas follows: For stringers, compute

~s~> with a-la from figure 15. Allowable value is a. from

figure 20 (single uprights). For rings (not floating), check similarly
with ~Gmx.

On notched rings, check edge of notch against buckling.

If rings are floating, assume ‘STH equals UST. .

~sign floating rings to carry combination of hoop compression (for-
mula (52) or section 10.4) and bending motint (section 10.6).

—.———— --
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For
per inch

For edge

10.9.Riveting

edges of panel along stringer, the required rivet she= strength
run is, by formula (55),

‘[
R“=ql+

riveted to ring, replace COS CL by sin a...!

Rivets should be checked for tensile strength (which includes rivet
pulling through the sheet as one possible nmde,of failure). The tentative
criterion for tensile strength is given by.emression (@) as .

Tensile strength of rivets per inch fi >0.%U~t

For tensile strengths of rivets, see figures 35 and 36.

,_

——____.__. ._._ —-—— -—. —--- ——.
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-,
Il..Combined

The preceding sections have dealt
shell subjected to pure torque loading.

Ioading
.

with the problem of designing a
They may also be used for

designing a shell subjected to transverse loads producing bending, pro-
vided the shell is so short that the axial stresses produced by bending
are small compsmed with the shear stresses. If the shell is not very
short, however, a nuniberof problems of combined loading arise. As a
first step toward the solution of these problems, the cylinder subjected
to torsion and compression has been investigated in reference 34, and
the followir@ method of analysis has been found to yield reasonable
accuracy.

The critical skar stress is calculated tith the aid of figure 30.
This stress is now denoted by Tcr,p where the additional subscript

zero indicates the condition of shear acting alone. Next, the critical
compressive stress is calculated and denoted by Ucr,o. Because the

classical theory of compression buckling of curved sheet is in poor
agreement with tests, the theoretical buckling coefficierrtsshould be
modified by an empirical factor (reference 35). In figure 37, the
values ‘cr.O and crcr+o are plotted on a u-T diagram. These two

points are ~onnected by-an “interaction curve.” Each point on the inter-
action curve characterizes a pati of critical stresses Ccr and Tcr
that, acting in conjunction,will produce buckling of the sheet. This
curve has been drawn from the equation

‘cr

()

Tcr 2
—+—= 1
‘cr,O ‘cr,O

(56)

which describes the interaction with sufficient accuracy (reference 35).

Let a denote the compressive stress that would exist in the cylinder
if the sheet did not buckle (i.e., remained fully effectiye) under the
action of the design compressive load P. Similarly, let T denote the
shear stress that would exist if the sheet did not buckle under the action
of the design torque T. The values of a and T establish the point C
h the U-T diagr~ Of fi~e 37. The line drawn from C to the origin
intersects the interaction curve at point D. The critical stresses Ucr

‘and Tm characterizedby point D are used in the following steps. For

convenience of notation, there are also used the interaction factors
.

‘crRC – * Tcr
; =—

. . Ucr,O ‘cr,O
(57) m
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.

With the aid of the ratios

Tcr,O
‘A=“— ; B=;

acr,O

which can be computed directly from the dimensions of the structure and
the specified design loads, the interaction factors can be written in the
fQI’m ‘

#=_&+

t

A2+l ‘ ;
kB2

The total stringer stress is the sum of the stringer stress due to
the compressive load P and the stringer stress due to the diagonal
tension caused by the torque, or

I ‘ST
= (JCST+ UTST

The stress”-@ST is com@ted by,the-form@a .

UC=
P

‘T n(AST +-htqc)

The load P must be taken as negatim because it is compressive; n is
the number of stringers, AsT is the area of”one stringer, and qt..is

the effective-width factor. This factor is taken as the K&m&Sechler
expression for effective width (reference 36), multiplied by the ratio

RC in order to make &llowance for the presence of the torque loading;
thus ..

‘(> ‘
~c = F‘crRC0.89 —

‘ST
(m)

If
is

—

expression (60) is substituted into equation (59), a quadratic equation
obtained which yields

{

CNST=L.% “’w= (61)

>.’

— ——-— ———- —- — ——. —
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,,

where

The stress flST

ratio ~ ,in order to
the modified formula is

ACJT ‘c-D = 0.445 ~ (62)

is computed by fornuila(51), modified by the

allow for the presence”of the compressive load P;

@
k-fcot a

ST =-%

K
+ 0.5(1 - k)RT -

(63)

The interaction factors & and I@, by definition, describe the
interactionbetween compression and torque at the instant of buckling.
Their use in formulas (6o) and (63) to describe the interaction on the

t effective width is fundamentally arbitrary. However, in the usual
design range, the effect of moderate errors h estimating the effective
width is unimportant; any reasonable method for esttiting the effect
of interaction on effective width ~% therefore acceptable for the time
being.

The stress in a ring is computed, according to reference 34, by the
unmodified formula (52). This procedure is, in principle at least, open
to some question; it would seem that some interaction factor should be
added h the denominator, as was done in equation (63). In the tests
made to date, the rings were relative= large; for this reason, and

. because the ring stresses are proportional to tan a (instead of cot a
as the stringer stresses),’the experimental.ring s-tresseswere too low
to afford a sensitive check on this point.

.Thediagonal strain in the 6heet is computedby equation (30d), on
the implied assumption that it is not modified significantlyby the com-
pressive force carriedby the sheet. The angle a is computedby
formula (~) or (45), the strain GST being computed from the total

compressive stress UST givenby expression (x). The diagonal-tension

factor k is obtained from figure 13 by using Tcr
(
not T

)cr,O ●

from
The stress computation for the case of conibinedloading thus differs
that for the case of pure torque loading in the following items:

(1) The critical stress is reduced by interaction ‘
.

— .. —____ — ———
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(2) The stringer stress due to the load P
calculation involves an interaction factor

(3) The calculation of the stringer stress
an interaction factor

85

must be added; this

due to the torque involves

Concerning item
dence to justify the
for design purposes.
but they have only a

(l), there is amp~e theoretical and experimental evi-
helief that the calculation is sufficiently accurate
The factors used in items (2) and (3) are arbitrary,
very minor effect except for low loading ratios.

Consequently, the accuracy with which the stresses can be computed under
combined loading might be expected to be about the same as for pure-torque
loading, as long as the ratio TITcr is greater than 2, and this expecta-

tionwas fulfilled in the tests of reference 34.

The question o< allowable stresses for failure is more problematical.
The allowable value of skin shear stress is probably not changed signMi-
cantly by added compression,but there is no experimental evidence on
this score. As far as true column failure of the stringers is concerned,
it would be immaterial whether the compressive stress in the stringer
arises directly from the axial load P, or indirectly (through diagonal-
tension action) from the torque; in other words, column failure would be
assumed to take place when the total stringer stress given by expres-
sion (58) reaches the column allowable value. The condition of true
column failure would only exist, however, if the cross section of the
stringer were completely immune to forced deformations induced by skin
buckles. As mentioned previously, the problem of interaction between
forced deformation and column failure is probably more serious in curved
than in plane webs, and fragmentary data indicate that no practical
stringer section may be completely free from interaction effects.

Since it appears that there will be some interaction in most cases,
the investigation of reference 34was carried out in the region where
the interaction is clearly large; namely,on stringers designed to fail
by forced crippling in the case of pure-torque loading. Five cyltiders
of identical construction were built; one was tested in pure compression,
one in pure torsion, and the other three in combtied compression and
torsion. The results were fitted by the interaction formula

()
T 1.5+ P

—= 1.00
~ Po

(64)

where T and P
stringer failure

stringer failure

causfng stringer

are the torque and the compressive load that cause
when acting simultaneously, To is the torque caushg

when acting alone, and P. is the compressive load

failure when acting alone. When this fo~a is used,

.: — —__—-_—_ ..—_ _ —.— —. .—
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it is not necessary-to compute the stringer stress by the meth6d described
previously for combined loading; a stringer-stress computation is made
only for the case of a pure torque’to calculate To. Ideally, the load
P. would also be calculated,but at present it would be safer to obtain

this loadby a compression test on one bay of the complete cylinder, or
on a sector of this bay large enough to contain at least five stringers.

12. General Applications

The discussions and formulas for curved diagonal
given on the assumption that the structure considered
cylinder. Evidently, more general types of’structme
by the same formulas by the usual device of amlyzing
individual paIle~. The questions”of detail procedure
must be answered by individual judgnent~ b-ecausemore

tension have been
is a circular
may be analyzed
small re@ons or
that wild.arise
general methods

are not available at present. The results.will obviously be more
uncertah, for instance, if there are large changes h shear flow from
one panel to the next. It shouldbe borne in mind that in such cases
problems in stress distribution exist even,,whenthe skin is not buckled
into a diagonal-tensionfield; the existence of tQese problems is often
overlooked because elementary theories are‘nornpllyused to compute the
shear flows. 1 ,,

\

13. Numerical Examples

As numerical examples of strength analyses of curved diagonal-
tension webs, two cylinders wiU be analyzed that were tested in the
investigation of reference 34. The cylinders were of n.ominally iden-
tical construction and cliffered only in loading conditions. They had
12 6tringers of Z-section and rings also of Z-section. The rings were
notched to let the stringers pass through them. Clip angles were used
to connect the strhgers to the rings and at the same tti t? reinforce
the edge of the notch. The analysis ~ be mhde for the test loads
that produced failure. The third example illustrates the calculation
of the angle of ttist for the cylinder used’in the ffist example.

Example 1. Pure torsion.-
reference 34. The material is

Basic data:

R= 15.0 in.

E= 10.6X 103 ksi

The example chosen is cylinder 1 of
2&T3 aluminum alloy. ~,’

t = 0.0253 in.’ ~ d = 15.0 in.

P s 0.32 h= 7.87 in.
.

(lrR=w-~269) ’675 G = 4.0 X 103 ksi

—



NACA TN 2661 87

!

.,

Stringers: Z-section

Rings: Z-section 3–x
4

Nominal shear stress:

T

3–xlx–
4

3 x 0.040; AST = o.og25in.a
4

2x– 3 x 0.081;
4

ARG = 0.251 in.2

388
‘ 2x 675 X 0.0253

= u.36 ksi

Bucklinf?stress:

z=
7.872

r 1-Ij.ox 0.0253
0.322= 155

‘Cr = 35
)? X 10.6X 103 X 7.872= ~ so hi

12x 152x 1552
. .

Loading ratio:

T u. 36—= — = 3.24
‘Cr 3.50

Diagonal-tension factor:

300 ~ = .3000.0253X 15.0= 0.965
15.ox 7.87

From figure 13: k = 0.63 ~1,
-.1,

First approximation for angle of diagonal tension:
,,.,

RR+ 15-OX 0.0253

RG 0.251

1

= 1.513

I

. . . —___ —
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ht
Rs=—=

7.87x 0.0253

AsT 0.0925

l+Rs

l+RR
= 1.256

From figure

From figure

idzI787 106x103

28(a): am = 32.3°

32: ~. 0.90

NACA TN 2661

2.155

= 10.1

“mm

(Y,= 32.3°X 0.90 = 29.0°

Stress and strain formulas:

From formulas (51)and (52):

0.63x u.36
‘sT=- cot a = -11.03 cot a ksi

0.465 + 0.5(1 - 0.63)

EST = -1.04X 10-3 cot a

0.63 x 1.I.36tana
aRG = - = -8.46 tanaksi

0.660+ O.S(I . 0.63)

eRG = -0.800X 10-3 tan a

——...—
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~ = 1.07x 10-3
E

First cycle:

a . 290 tana= 0.554 cot a = 1.805

From figwre 31: !.

eE
—= 1.90

T ; G = 1.90 X 1.07X 10-3 = 2.035 X 10-3

‘ST =
-1.04x 10-3 x 1.805 = -1.875 x 10-3

ERG = -0.800X 10-3X 0.554= -0.~x 10-3

Accord.ingto formula (~):

tan% =
2.035 + 1;875

= 0.280
2.035 + O.~0+ 11,.~

tana= 0.529

Second cycle:

The final value of a is closer to the computed value of the pre-
ceding cycle than to the initially assumed value; therefore, take as the
next approximation

tana=0.5&+~ (0.554- 0.529)‘o.535

Cd ~ = 1.87 a = 28°10’

-.— ——
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From figure 31: ‘

GE-T = x.92 ; G = 1.92X 1.07X 10-3 = 2.054X 10-3

~sT = -1.04x 10-3X 1.87 = -1.945,x 10-3

cm = -0.800X 10-3x 0.535= -0.427x 10-3

tan2cc=
2.054+ 1.945 =0.286 .

2.054+ 0.427+ 1.1.k8

tana = 0.535

The computed value of tan u checks the
is therefore the final one.

Stresses:

‘ST = 6STX
E= -1.945x 10-3x

E= -0.427X 10-3x

strain measurements

assur@d

10.6X

10.6X

in the

value; the second cycle

103 = -20.61ssi

Lo3= -4054@i

test were taken at“Note: The last
99 percent of the failing torque. The extrapolation to 100 percent gave
a stringer stress of -20.20 ksi, which iS numerically less than the cal-
culated value by 2 percent.

Web strength:

!l?kcalculated skin stress being 1.I.36ksi, inspection of figure 19(a)
shows that there is a large margin (about 50 percent) against skin rupture.

Stringers, column failure:
.

The radius of gyration of the stringer section is 0.k08 inch; therefore,

d
- 18.4

.

~-

—

——— ..—
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This slenderness ratio is so low that there is obviously a large margin
against column failure at the computed value of stringer stress.

Stringers, forced-crippling failure:

~om figure 15: %= 1.16

‘ST- = -20.6x 1.16
.

ts~ 0.0404.—=
t 0.0253

From figure 20: cro= -22.3ksi

Note: The “design allowable” value
is 7 percent greater than the calculated

= -23.85ksi

1.60

of the stringer stress (-22.3 ksi)
value of -23.85 ksi. Therefore,

the calculation would have predicted failure at a.torque 7 percent lower
than the ac&l. failing torque, that is, the calculation is 7 percent
conservative. The “best possible estimate” of the allowable stress (based
on the middle of the scatter band instead of the lower edge) would be
25 percent higher than the “design allowable” value; a strength predic-
tion based on this value thus would have been 18 percent unconservative.

Example 2. Combined loading.- The example chosen to demonstrate the
analysis of a cylinder under combined torsion and compression is cylin-
der 5 of reference 34. In order to simplify the demonstration by making
use of partial
the dimensions
dfffered by as

Basic data:

results obtained in
given for example 1
mch as 2 percent.

Dimensions as in example 1.

T= 303 tich-kips

Compression area:

12 stringers =

Sheet (lO@) = fix

example 1, it will be assumed that -
apply; actually, some of the dimensions

P = -13.5kips

~X 0.0925 = 1.11 in.2

30x0.0253 =2.38 in.2

Total 3.49 in.2

——..— —..
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Basic stresses:

‘cr,O = 3.50 ksi (see example 1)

u&, o = -3.95ksi

The latter value is computed according to the recommendations of refer-
ence 35 with an emptiical reduction factor.

.

At the design loads, the nominal stresses are

~=- -13.5_ #&i

3.49 .

T.g=8.86kSi
.

lhteraction factors:

From formulas (57):

‘A= 3.5°—= -0.588
-5-95

B
8.86=—= -2.29
-3.87

IW = 0.878 Rc .o.~

Tcr = 0.878x 3.50= 3.07ksi ucr = -0.228x5.95 = -1.356ksi

Compressive stregs due to axial load:

From formulaf3(62) and (61), respectively

D= O.445X 2.155

Cf~T= -lo.55.ksi

rX 0.228X 1.356= 0.254

cc
.ST=

-0.996x 10-3

.

.— —- —. ——.—
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Diaaonal-tension factor:

)“

T 8.86 288—=— =.
‘cr 3.07

k = 0.59

Stress and strain formulas:

From formula (63): 1,

flsq = -
0.59x 8.86 cot cc

= -8.}0 cot aksi
0.465 + 0.s(1- 0.59) x 0.878

~TsT = -0.764x 10-3 cot u

From formula (52):

o.59~8.86 tana
=’-6105 tanaksi

0.660+ 0.5(1 - Q.59) ,

CRG = -0.570 X 10-3 tan a
.,

Commutation cvcle:

Only the last
tially the same as

cycle will be shown here. This computation is essen-
for a case of pure to&ign (example 1), except that

the stringer strain due to axial load ~UST) is added to the strain due

to the torque
()
~TST .

. .

The first approximation to the angle a may be obtained by disre-
garding the compression, that is to say, in the same manner as in
example 1. An analyst with some experience may improve this approxima-
tion by adding a correction for the effect of the axial load (compression
load will steepen the angle).

—.

Assume a = 28°30~; tan a = 0.543; cot a = 1.84

. .—_..—___ ——. -. —_ — —— — —. —
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From figure 31:

NACA m 2661

a—= 1.86
T ; e

‘1”86XG%J=
1.552x 10-3

From the strain formulas:

#~T = -0.764x 10-3 X 1.84 = -1.405X 10-3

c= k -0.570x 10-3x 0.543= -0.310x 10-3

tan% =
1.552+ 1.405 + 0.996

1.552+ 0.310 + 11.~

tana = 0.544

Thisresult agrees with the assumed value

= o.2g6

with the accuracy of
calculation and th& constitutes the final value.

By the stress formulas

-8.10UT
ST =—= -14.90ksi

0.544

Therefore the total stringer stress is

u~~ = -14.90- 10.55= -25.45ksi

The value measured (on a cylinder with slightly different actual
dimensions) was -25 ksi.

Failure:

Since the torque is much less than in example 1 (pure-torque case),
there is awlde margin against web rupture.

—— ——___ —
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The margin against stringer failure is evaluated by formula (64).
According to test (reference 34), the cylinder failed under pure com-
pression at P. = 42.o kipS. Under pure torque, the test gave

To = 388 inch-kips: (the calculated value of To (example 1) is 7 per-

cent lower). Thus, with the “design loads” T = 303 inch-kips and
P = 13.5 kips

()T I.’j p ()3031.5 13.5
~ ‘~= a

—= 1.01
+ 42.0

I?ote: Because the “design loads” T and P used in this example
were actually test failing loads and because the interaction
based on a series of tests on cylinders of these dimensions,
lated value of 1.01 indicates that the analytical expression
the interaction curve fits this particular test very well.

—
curve was
the calcu-
chosen for

Example 3. Angle of twist.- In this example, the angle of twist
be calculated for the cylinder of example 1 at the failing torque.

According to example 1:

tana= 0.535 ; m cc= 1.87 ; sti % = 0.832 ; k = 0.63

By formula (31b):

E 4“ 0.5352 1.872—=—
% 0.8322+ 0.660+ 0.5(1- 0.63)+ 0.465+ 0.5(1- 0.63)

$ = 5*77+ 0.34+ 5.39 = 11.50

~ = & = 10~~ ~0103 = 0.922 x 103 ksi
. .

.

. . . .-——.—-— -.——-— ——— ——— .F- —.— ---
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By formula (31a):”

1—= ~+ “ 0“63 O.oga x 10-3+ 0.6!33x 10-3
‘m 0.922x 103 =

= 0.77’5x 10-3

G-i-Ml= 1.29x 103 ksi
J-U.L

The torsion constant for the polygon

(
J=2XfiX 153X0.02531-

section is

)
&X 0.5242 = 492

For a length of 60 inches, the sngle of twist is

TL 388x k
— = = 0.0366 ratian

%?TJ l.~x 103X 492

‘ Langley Aeronautical Laboratory
National Advisory Conmittee for Aerofiutics

Langley Field, Vs., October .5,1951

“

—
,,
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APPENDIX

97

PORTAL-FRAME EFFECT

/ ,.

IR the stress analysis of plate girders of constant depth,.it is
customary to assume that the shear web carries the entire shear. This
assumption is usually a very good one, but it may become inaccurate
under some conditions. H the flanges are heavy and deep, the portion
of the shear c-ied by the flanges may hcome wpreciable; this condi-
tion is aggravated by the yieldingof the web-to-flange attachments and
of the web, when the formulas of the elementary beam @eory begin to
break down.

The tip bay of a plate girder is usually reinforced by a web doubler
plate. H the unreinforced portion of the web.is removed completely,
there remains a “portal frame” (fig. 38) consisting of the .-twoflanges
connected by a built-up transverse msmber. This portal frame can carry
a shear load which may be appreciable compared with the shear load
carried in the web. A rough approxwt ion of the portal-frame shear may
be obtained under the following assumptions:

(a) The transverse member in the frame is sufficiently stiff to
maintain the right angles between this member and the flanges .

(b) The deflections of the portal frame and of the shear web are
independent of

The deflection

The deflection
approximately

each other except at the tip . .
.

of the shear web under a load of unit magnitude & .

where I is the
the ratio of the

%=LhtGe -

of the portal frame under a load of unit magnitude is

. i52
L3

=—
24EI

motint of inertia of one
shear carried by the web

s’ 1—=—. —

,>

flange● Under assumption (b),
to the total shear is

1

s ‘- 51 ~ + 24EI
l+—

52 L2htGe

— .—— —
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Test evidence suggests that’it would be wise not to count on
portal-frame effect in routine strength predictions (Part II,
section 2.4). Conversely, however, it would seem wise to reduce
allowable web stresses deduced from special tests if the flanges
of the test beam me much stiffer than those in the actual airplane
structure.

,

——
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(a)

Figure 5.= Secondaryactionsin diagonal —tension beams .

(a)
Figure 6.– Effect of diagonal tension on column length of uprights.
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Figure 7.- Ratio of effective to actual area of uprights. =S=
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Figure 8.- Stress systemsin diagonal-tension webs.
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Figure IO.- Upright forces” by two theories.
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